
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART I: ECOSYSTEMS AND APPLICATIONS

Sanghyun Hong
sanghyun.hong@oregonstate.edu

PUBLIC KEY INFRASTRUCTURE (PKI)

Secure AI Systems Lab :: CS 578 - Cyber-security 2

PUBLIC KEY INFRASTRUCTURE

• A collection of
− Hardware, software, policies, procedures and humans

− Required to create, manage, distribute, use, store, and revoke digital certificate

• Components
− RA (registration authority)

− CA (certificate authority)

− VA (validation authority): X.509, CRL

− Others:

• Central directory

• Management system

• Policy

3

1https://en.wikipedia.org/wiki/Public_key_infrastructure

PUBLIC KEY INFRASTRUCTURE

• Digital certificate
− Entity info (CN)

− Issuer info (CN)

− Public key

− Signature

4

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE CREATION

• Requester prepares a certificate request
− Entity information

− Public key

− Signature (proving that I have the public key)

5

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE CREATION

• Requester prepares a certificate request
− Entity information

− Public key

− Signature (proving that I have the public key)

6

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

Get SHA256 sum of this part

Sign it with the private key

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE CREATION

• Requester prepares a certificate request
− Entity information

− Public key

• Issuer (CA) verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)

 RSA_encrypt(private_key, SHA-256(certificate))

7

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE CREATION

• Issuer (CA) verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)
 RSA_encrypt(private_key, SHA-256(certificate))

8

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (using beaver’s private key)

Get SHA256 sum of this part

Sign it with the private key

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE CREATION

• Requester prepares a certificate request
− Entity information

− Public key

• Issuer verifies the requester information, and digitally sign the cert
− Verify the entity information

− Get a SHA-256 fingerprint of the certificate

− Sign the fingerprint (with issuer’s private key)

 RSA_encrypt(private_key, SHA-256(certificate))

• Anyone with the public key can verify the result
− Get issuer’s public key from their certificate

9

CERTIFICATION CREATION DETAILS: STEP 1

• The certificate requesting entity fills
− Entity information

− Public Key

• Entity:
− For google, its *.google.com

− Can be your website address

• *.secure-ai.systems
− also has a certificate

10

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (with beaver’s private key)

CERTIFICATION CREATION DETAILS: STEP 2

• The issuer receives the certificate request and verifies:
− Entity

• Their identification

• Owning the target domain name

• Owning the public key

− The signature

• Decrypt the signature with public key

• It must be the same as SHA256 sum

• It proves their holding the private key

11

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Signature: 0xaabbccddeeff00112233445566778899
 (with beaver’s private key)

CERTIFICATION CREATION DETAILS: STEP 2

12

• The issuer receives the certificate request and verifies:
− Entity:

• Their identification

• Owning the target domain name

• etc…

− Then, fill issuer information

• Issuer information

• Issuer public key

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff

CERTIFICATION CREATION DETAILS: STEP 2

13

• The issuer receives the certificate request and verifies:
− Entity:

• Their identification

• Owning the target domain name

• etc…

− Then, fill issuer information

• Issuer information

• Issuer public key

− and then, sign the certificate

• Get SHA-256 of the certificate

• Attach it as a signature!

CN = oregonstate.edu

Certificate
CN: oregonstate.edu
Will use for:
 *.oregonstate.edu

Public Key: 0x112233445566778899aabbccddeeff….
 (beaver’s public key)

Issuer: InCommon RSA
Public Key: 0x22334455667788990011aabbccddeeff
Signature: 0xffeeddccbbaa00112233445566778899
 (InCommon RSA’s private key)

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE CREATION

• Now InCommon RSA verified
− oregonstate.edu is owned by

− Oregon State University

− With a specific Public Key

14

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE VERIFICATION

• OSU owns “oregonstate.edu”
− Verified by InCommon RSA

• Verification of the certificate
− Use InCommon RSA’s public key

− Where is it? It is written in InCommon RSA’s certificate

• But InCommon RSA, who will verify their identity?
− InCommon RSA verifies “oregonstate.edu”

− Who will verify InCommon RSA?

15

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE VERIFICATION

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

16

PUBLIC KEY INFRASTRUCTURE – CHAIN OF TRUST

17

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

PUBLIC KEY INFRASTRUCTURE – CHAIN OF TRUST

18

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

PUBLIC KEY INFRASTRUCTURE – CHAIN OF TRUST

19

• “oregonstate.edu”
− Verified by InCommon RSA Server CA

• InCommon RSA Server CA
− Verified by USERTrust RSA Certificate Authority

• USERTrust RSA CA
− Verified by self

ROOT CERTIFICATE AUTHORITY (ROOT CA ≈ US IN PREV. EXAMPLE)

• Define small set of trustworthy certificate authorities
− Private companies are authorized by some jurisdiction to run the CA company

• Google Trust Service (GTS CA)

• DigiCert

• Verisign

• etc..

• Trust their self-signed certificate
− Stored in almost every computer machines

20

PUBLIC KEY INFRASTRUCTURE (PKI)

21

oregonstate.edu

InCommon

USERTrust

• An Infrastructure that provides public key with certificate chain

• Trust anchor: Root CA
− Set a small set of entities use self-signed cert

• Verify the certificate chain!
− Must verify the entire chain

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE REVOCATION

• Make an issued certificate invalid
− CA is responsible for revocation

• Revocation procedure
− A certificate holder informs the CA, possibly

• The certificate is compromised

• The certificate expiration date is approaching

− CA produces authenticated attestations that the certificate has been revoked

− CA maintains a certificate revocation list (CRL)

• Only for the certificates that has re-issued and revoked prior to their expiration date

• Contains (serial number, time stamp of revocation, reason for revocation, …)

• Client is responsible for periodically download CRLs

22

PUBLIC KEY INFRASTRUCTURE – CERTIFICATE REISSUE

• Re-create and replace a certificate
− CA is responsible for certificate reissue

− Client is responsible for making a certificate signing request

• Reissue procedure
− A certificate holder informs the CA, possibly

• The certificate is compromised

• The certificate expiration date is approaching

− A certificate holder makes a certificate signing request

• CA will make a new signature with their private key

• (Optional) Client can choose a new private/public key pair for the reissue

23

CERTIFICATE REVOCATION MEASUREMENT
– IN THE WAKE OF HEARTBLEED

Secure AI Systems Lab :: CS 578 - Cyber-security 24

REVISIT: HANDSHAKE REQUIRES FORWARD SECURITY

• Forward Secrecy / Perfect Forward Secrecy
− We want to keep all the communication secure

− Even if the server’s private key (i.e., the long-term key) has been breached

• Example of such breaches
− Heartbleed (https://heartbleed.com/): CVE-2014-0160

25

https://heartbleed.com/

IMPACT OF HEARTBLEED ON CERTIFICATE REVOCATION

• Check the trust chain
− A large increase in the fraction of newly-appearing certificates

− Many certificates are re-issued in the wake of heartbleed

Secure AI Systems Lab :: CS 578 - Cyber-security 26

INFERRING HEARTBLEED VULNERABILITY

• Check if a website admin revoked or reissued their certificate
− It has been running a vulnerable OpenSSL version

− It has not supported the Max Fragment Length

Secure AI Systems Lab :: CS 578 - Cyber-security 27

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Check if a website admin revoked or reissued their certificate
− It has been running a vulnerable OpenSSL version

− It has not supported the Max Fragment Length

• Vulnerability analysis
− Certificate birth: the date of the first scan (observing a host advertising the cert)

− Certificate death: the last date that the number of advertising the cert
 > 10% of the max advertising that they observed before

− Certificate reissue:
• If the cert dies and they observe a new cert with the same CN within 10 days

• and If at least one IP address switch from the old cert to the new cert

− Certificate revocation: when the cert’s serial number appears in any CRLs

Secure AI Systems Lab :: CS 578 - Cyber-security 28

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Birth, death, reissue, and revocation
− The number of birth > the number of death

− A large spike in all four events in the wake of Heartbleed

− On average, 29 revocations per day before Heartbleed,
but this jumps to 1,414 after it

Secure AI Systems Lab :: CS 578 - Cyber-security 29

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Prevalence after the wake
− The vulnerability has been reduced to less than 10%

− But that does not mean that our Internet is safe

Secure AI Systems Lab :: CS 578 - Cyber-security 30

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Certificate Reissues
− Generally, 50% of the certificates are re-issued within 60 days

− A site may periodically reissue certificates as a matter of policy, e.g., google.com

Secure AI Systems Lab :: CS 578 - Cyber-security 31

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Certificate Reissues
− Generally, 50% of the certificates are re-issued within 60 days

− A site may periodically reissue certificates as a matter of policy, e.g., google.com

• Heartbleed induced reissues
− The date of reissue was on and after the Heartbleed

− > 60 days left until the expiration date

− No two other issues for the certs
with the same common name (CA)
before Heartbleed

Secure AI Systems Lab :: CS 578 - Cyber-security 32

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Certificate Reissues
− Generally, 50% of the certificates are re-issued within 60 days

− A site may periodically reissue certificates as a matter of policy, e.g., google.com

• Heartbleed-vulnerable certificates (that should have been reissued)
− The date of birth was before Heartbleed

− The certs won’t expire 1 mo after the event

− The certs were from the vulnerable hosts

− Results
• 107,712 vulnerable certificates

• 26.7% has been re-issued before “1 mo after Heartbleed”

• 73.3% has not been re-issued

Secure AI Systems Lab :: CS 578 - Cyber-security 33

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Certificate Reissues
− Generally, 50% of the certificates are re-issued within 60 days

− A site may periodically reissue certificates as a matter of policy, e.g., google.com

• Heartbleed-vulnerable certificates (that should have been reissued)
− The date of birth was before Heartbleed

− The certs won’t expire 1 mo after the event

− The certs were from the vulnerable hosts

− Results
• There are certs are re-issued

with the same key

Secure AI Systems Lab :: CS 578 - Cyber-security 34

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Certificate revocation
− There is a spike in revocation after the wake of Heartbleed

− Most of the domains that will revoke their certs in direct response to Heartbleed

− There are “dips” in the revocation rate (particularly during the weekend)

Secure AI Systems Lab :: CS 578 - Cyber-security 35

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Certificate revocation
− 40% of the retired certificates are revoked (2-3% of the total revocation)

− Revocation and reissue do not happen at the same time… what? (speed difference)

− Reissues have been done, but revocations were not done (the long term vuln.)

Secure AI Systems Lab :: CS 578 - Cyber-security 36

INFERRING HEARTBLEED VULNERABILITY – CONT’D

• Certificate revocation lists (CRLs)
− An increase in the number of revocation reasons “key compromised” (0.4 -> 1.18%)

− 85% of the times, 85% of the revocations are available on clients after 10 hours
• CAs could revoke certificates as often as every few hours

• The delay was because of the human-in-the-loop

• It’s unclear about the client’s impact

Secure AI Systems Lab :: CS 578 - Cyber-security 37

Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part I: Ecosystems and applications
	Slide 2
	Slide 3: Public key infrastructure
	Slide 4: Public key infrastructure
	Slide 5: Public key infrastructure – certificate creation
	Slide 6: Public key infrastructure – certificate creation
	Slide 7: Public key infrastructure – certificate creation
	Slide 8: Public key infrastructure – certificate creation
	Slide 9: Public key infrastructure – certificate creation
	Slide 10: Certification creation details: step 1
	Slide 11: Certification creation details: step 2
	Slide 12: Certification creation details: step 2
	Slide 13: Certification creation details: step 2
	Slide 14: Public key infrastructure – certificate creation
	Slide 15: Public key infrastructure – certificate verification
	Slide 16: Public key infrastructure – certificate verification
	Slide 17: Public key infrastructure – chain of trust
	Slide 18: Public key infrastructure – chain of trust
	Slide 19: Public key infrastructure – chain of trust
	Slide 20: Root certificate authority (Root CA almost equal to US in prev. example)
	Slide 21: Public key infrastructure (PKI)
	Slide 22: Public key infrastructure – certificate revocation
	Slide 23: Public key infrastructure – certificate reissue
	Slide 24
	Slide 25: Revisit: handshake requires forward security
	Slide 26: Impact of heartbleed on certificate revocation
	Slide 27: Inferring heartbleed vulnerability
	Slide 28: Inferring heartbleed vulnerability – cont’d
	Slide 29: Inferring heartbleed vulnerability – cont’d
	Slide 30: Inferring heartbleed vulnerability – cont’d
	Slide 31: Inferring heartbleed vulnerability – cont’d
	Slide 32: Inferring heartbleed vulnerability – cont’d
	Slide 33: Inferring heartbleed vulnerability – cont’d
	Slide 34: Inferring heartbleed vulnerability – cont’d
	Slide 35: Inferring heartbleed vulnerability – cont’d
	Slide 36: Inferring heartbleed vulnerability – cont’d
	Slide 37: Inferring heartbleed vulnerability – cont’d
	Slide 83

