
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART II: OS SECURITY

Sanghyun Hong
sanghyun.hong@oregonstate.edu

COMPUTER SYSTEMS SECURITY

• What does an adversary want to do?
− We learn

• Buffer overflow
• Heap overflow
• Off-by-one
• Use-after-free

− Ok, after doing the buffer overflow, then what?
• Subverting a system…
• Get the root!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 3

ATTACK SURFACE REDUCTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 4

PRELIMINARIES

• What is an operating systems?
− Computer software that

lies between hardware and applications

Hardware (CPU, GPU, Mem, …)

Humans Run Applications

……

Operating System (OS)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 5

PRELIMINARIES – CONT’D

• What does it do?
− Manage resources
− Provide abstractions
− Offer standard interfaces

Hardware (CPU, GPU, Mem, …)

Humans Run Applications

……

Manage CPU, Memory, Networking, Storage…

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 6

PRELIMINARIES – CONT’D

• What does it do?
− Manage resources
− Provide abstractions
− Offer standard interfaces

Hardware (CPU, GPU, Mem, …)

Humans Run Applications

……

Manage CPU, Memory, Networking, Storage…

H/W Abstractions

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 7

PRELIMINARIES – CONT’D

• What does it do?
− Manage resources
− Provide abstractions
− Offer standard interfaces

Hardware (CPU, GPU, Mem, …)

Humans Run Applications

……

Manage CPU, Memory, Networking, Storage…

H/W Abstractions

Standard Interfaces (Libraries)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 8

MODERN OPERATING SYSTEMS ARE COMPLEX AND LARGE

• Linux kernel supports
− Managing many different hardware (e.g., memory, CPUs, GPUs, power system, …)
− Many different interface to communicate and control hardware (e.g., device drivers, IOCTL)
− Many different software libraries (e.g., OpenSSL, GlibC, …)

• The complexity may introduce potential vulnerabilities
− Different developers write kernel device drivers, core functionalities, and so on

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 9

MODERN OPERATING SYSTEMS ARE COMPLEX AND LARGE – CONT’D

• How to reduce potential vulnerabilities?
− Key intuition: attack surface reduction
− CVE-2013-2094: _perf_event_open – not used by any common applications

• Prior approaches and limitations
− Build from scratch – build a new kernel with the reduced functionalities

• Compatibility issues with the commodity hardware
• Time consuming, more potential vulnerabilities, and so on

− Re-construction – current monolithic kernel
• Modifying existing kernel is not easy

− Customization – tailor existing kernels without modifications
• The lack of Linux distribution support and overhead
• Compatibility issues with existing Kernel level protections (e.g., kASLR)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 10

KASR: KERNEL ATTACK SURFACE REDUCTION

• Design goals
− Reliable – reduce the attack surface
− Transparent

• Should work with the commodity kernels
• Does not need the source code
• Does not break the kernel code integrity

− Efficient – minimal impact on the kernel performance (e.g., ~ 1% increase)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 11

KASR: KERNEL ATTACK SURFACE REDUCTION

• Design choices
− Use hypervisor

• It runs the target system’s kernel in a VM
• It has a complete view of the VM’s memory allocations (and de-allocations)
• It supports libraries for dynamically altering the memory allocations (and de-allocations)

− Do it at the page-level

• Threat model
− The hypervisor is clean
− The VM is clean in the offline stage
− It can be compromised in runtime

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 12

KASR: KERNEL ATTACK SURFACE REDUCTION

• Operation: profile-then-deploy
− Offline profiling – identify the pages used by the VM
− Online – selectively activate the used code (only) when requested

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 13

KASR: KERNEL ATTACK SURFACE REDUCTION

• Operation: profile-then-deploy
− Offline profiling (training)

• Kernel image: used code extraction via hypervisor
− Used pages – ftrace is not appropriate, e.g., it misses pages at the start-up phase
− Remove the executable permissions from all code pages of the kernel image
− Get an exception, then set it to executable and record it

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 14

KASR: KERNEL ATTACK SURFACE REDUCTION

• Operation: profile-then-deploy
− Offline profiling (training)

• Kernel modules
− Linux kernel modules (LKMs) are dynamically loaded and unloaded at runtime
− Pages allocated by LKMs are freed and re-allocated, e.g., think of a USB driver
− Only the pages causing exceptions can gain the executable permission

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 15

KASR: KERNEL ATTACK SURFACE REDUCTION

• Operation: profile-then-deploy
− Offline profiling (training)

• Page identification
− Use page frame number (PFN)
− Address layout should be unique and consistent at a start-up, what? kASLR
− Use multi-hash-value approach (why not one-hash, fuzzy hash?)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 16

KASR: KERNEL ATTACK SURFACE REDUCTION

• Operation: profile-then-deploy
− Runtime enforcement

• Permission deprivation: remove the execution permission from un-used pages
• Lifetime segmentation: even for the used code, it deprives the execution permission

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 17

KASR: KERNEL ATTACK SURFACE REDUCTION

• KASR effectiveness (5 applications, e.g., httperf)
− Substantial reduction of kernel pages

• 53 – 54% reduction after the permission deprivation
• 61 – 64% reduction after the lifetime segmentation

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 18

KASR: KERNEL ATTACK SURFACE REDUCTION

• KASR effectiveness (5 applications, e.g., httperf)
− Substantial reduction of kernel pages

• 53 – 54% reduction after the permission deprivation
• 61 – 64% reduction after the lifetime segmentation

− 40% CVE removals in the memory
• Modules containing past CVE vulnerabilities are not loaded into the kernel
• Among the total CVEs found in the past 2 years of these applications’ GitHub repo

− Rootkit prevention
• LKM is the attack vector

− Step 1: Inject malicious code into the kernel memory
− Step 2: Hook the code on target kernel functions (e.g., syscalls)
− Step 3: Transfer the kernel context flow to the code

• These rootkits are not available to do the step 3

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 19

KASR: KERNEL ATTACK SURFACE REDUCTION

• KASR effectiveness (5 applications, e.g., httperf)
− Substantial reduction of kernel pages

• 53 – 54% reduction after the permission deprivation
• 61 – 64% reduction after the lifetime segmentation

− 40% CVE removals in the memory
• Modules containing past CVE vulnerabilities are not loaded into the kernel
• Among the total CVEs found in the past 2 years of these applications’ GitHub repo

− Rootkit prevention
• LKM is the attack vector

− Step 1: Inject malicious code into the kernel memory
− Step 2: Hook the code on target kernel functions (e.g., syscalls)
− Step 3: Transfer the kernel context flow to the code

• These rootkits are not available to do the step 3
− Marginal performance overhead (1.47% at max and 0.23% on average)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 20

PROPER ACCESS CONTROL

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 21

LINUX ACCESS CONTROL

• Everything is a file
− Definition: a named collection of data (e.g., movie.csv containing movie data)
− POSIX : a sequence of data bytes
− *NIX OS : everything

• Files on secondary storages, e.g., disks
• Devices (mouse, keyboard, monitor, …)
• Network devices (network card, sockets in OS, …)
• Inter-process communications (pipes, sockets, …)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 22

LINUX ACCESS CONTROL – CONT’D

• Directories
− Definition : a folder containing files and directories
− Motivation:

• Scenario: one day you create 100k+ files and the next day, you want to use them
− Solution :

• S0: You are Von Neumann; remember all the files
• S1: Your system creates a folder containing all the files for each user
• S2: Your system creates multiple folders containing the same kinds

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 23

LINUX ACCESS CONTROL – CONT’D
~/lecture/CS578$ ls -alh

total 312K
drwxrwx---. 6 sahong upg1xxxx 186 Apr 10 22:14 .
drwxrwx---. 3 sahong upg1xxxx 73 Apr 5 19:58 ..
drwxrwx---. 2 sahong upg1xxxx 95 Apr 5 19:58 bufferoverflow
drwxrwx---. 2 sahong upg1xxxx 52 Apr 4 09:02 bufferoverrun
drwxrwx---. 8 sahong upg1xxxx 299 Apr 10 21:56 .git
-rw-rw----. 1 sahong upg1xxxx 430 Apr 5 19:56 .gitignore
lrwxrwxrwx. 1 sahong upg1xxxx 22 Apr 10 22:14 home -> /nfs/stak/users/hongsa
-rw-rw----. 1 sahong upg1xxxx 44 Apr 4 08:15 README.md
drwxrwx---. 2 sahong upg1xxxx 79 Apr 5 20:07 thread
Permission # hard-link owner owner-group size (b) last modified name

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 24

LINUX ACCESS CONTROL – CONT’D
~/lecture/CS578$ ls -alh

total 312K
drwxrwx---. 6 sahong upg1xxxx 186 Apr 10 22:14 .
drwxrwx---. 3 sahong upg1xxxx 73 Apr 5 19:58 ..
drwxrwx---. 2 sahong upg1xxxx 95 Apr 5 19:58 bufferoverflow

… <omit the entries>

Permission # hard-link owner owner-group size (b) last modified name

• Linux controls the access to files or directories based on three categories:
− user : owner of a file or a directory
− group : the group where users are
− others: all the other users

All users: OSU
Instructor

EECSsahong

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 25

LINUX ACCESS CONTROL – CONT’D

• Permission
− Read : one can read files and directories with ‘r’ permission
− Write : one can write files and dirs. with ‘w’ permission
− Execute: one can execute files and dirs. with ‘x’ permission
− SetUID : one can execute files and dirs. with

 the permissions of the owner/group of the command
− sticky : except the creator and the root, no one can modify or delete the file

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 26

LINUX ACCESS CONTROL – CONT’D
~/lecture/CS578$ ls -alh

total 312K
 … <omit the entries>
-rw-rw----. 1 sahong upg1xxxx 44 Apr 4 08:15 README.md
drwxrwx---. 2 sahong upg1xxxx 79 Apr 5 20:07 thread
Permission # hard-link owner owner-group size (b) last modified name

• Permission representation
− drwxrwx---

[Type] d: directory, -: file

[User] the first three letters (rwx)
[Group] the second three letters (rwx)
[Others] the last three letters (---)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 27

LINUX ACCESS CONTROL – CONT’D
~/lecture/CS578$ ls -alh

total 312K
 … <omit the entries>
-rw-rw----. 1 sahong upg1xxxx 44 Apr 4 08:15 README.md
drwxrwx---. 2 sahong upg1xxxx 79 Apr 5 20:07 thread
Permission # hard-link owner owner-group size (b) last modified name

• Permission representation
− drwxrwx---:

• 770
• 111111000

Interpretation
- Decimal #: 1st (user), 2nd (group), 3rd (others)
 + ex. 770 : 7 (user), 7 (group), 0 (others)

- Each #: Binary number
 1st (read), 2nd (write), 3rd (execute)
 + ex. 7 : 111 (rwx)
 + ex. 6 : 110 (rw)
 + ex. 600 : 110 000 000 (your ssh key)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 28

LINUX ACCESS CONTROL – CONT’D

• Permission
− SetUID : one can execute files and dirs. with

 the permissions of the owner/group of the command (e.g., /usr/bin/passwd)
− sticky : except the creator and the root,

 no one can modify or delete the file (e.g., /tmp)

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 29

LINUX ACCESS CONTROL – CONT’D

• Linux supports uid-setting system calls
− setuid, seteuid, setreuid, and setresuid
− Three user IDs

• Real UID: the user ID who launched the process
• Effective UID: the user ID who will be effective while the process is running (e.g., setuid)
• Saved UID: the user ID saved when there’s a switch btw the real and effective UIDs

− Problem: the setuid model is not well-understood and poorly used
• What is the appropriate privilege?

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 30

DEMYSTIFY THE SETUID USAGE

• Goals
− Understand the semantics of security operation APIs in OS
− Check their documentations
− Detect inconsistency between the documentations and implementations
− Build security properties and check them in programs automatically

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 31

DEMYSTIFY THE SETUID USAGE

• Desiderata: principles of least privilege
• Solution approach: formal model

− What’s the formal model? Finite state automata (FSA)
− How to define the state?

• (r, e, s) – real, effective and set UIDs
• In Linux, it becomes (r, e, s, b) – b stands for the setuid bit

− How to extract the formal model?
• Design a model extraction algorithm
• Run the algorithm with simulations and build the model

− What are the potential challenges?
• The state space is too large

− Use symmetry (isomorphism)
− Non-root uID (100, 100, 100) is the same as (200, 200, 200)

• No assumption about outside alterations of these user IDs

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 32

DEMYSTIFY THE SETUID USAGE

• Desiderata: principles of least privilege
• Solution approach: formal model

− What’s the formal model? Finite state automata (FSA)
− How to define the state?

• (r, e, s) – real, effective and set UIDs
• In Linux, it becomes (r, e, s, b) – b stands for the setuid bit

− How to extract the formal model?
• Design a model extraction algorithm
• Run the algorithm with simulations and build the model

− What are the potential challenges?
• The state space is too large

− Use symmetry (isomorphism)
− Non-root uID (100, 100, 100) is the same as (200, 200, 200)

• No assumption about outside alterations of these user IDs

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 33

SECURITY BENEFITS

• Applications
− Identify documentation errors, setuid(2) in Linux man page
− Detect inconsistencies in the Linux implementation and documentation

• fsuid in Linux is used for filesystem permission checking
• fsuid becomes 0 only if at least one of r, e, s UIDs is 0

− UID-setting system call’s proper usage, e.g., sendmail 8.10.1

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 34

SECURITY RECOMMENDATIONS

• Guidelines
− General

• Selecting appropriate system calls
• Obeying the proper order of these calls
• Verifying proper execution of system calls

− An improved API
• Proposed new API
• Implementation
• Evaluation

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 35

(KERNEL) FUZZING

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 46

PRELIMINARIES ON FUZZING

• An automated software testing technique
• Goal:

− To find program inputs that expose a software bug (or vulnerability)

• Approach:
− Construct inputs randomly (1990s)
− Run a program on them until it crashes

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 47

PRELIMINARIES ON FUZZING

• History of fuzzing techniques
− 2000s – fuzzing uses input mutations (e.g., bit-flips, bytes, insertion/deletion, …)

• Black-box approach
− 2010s – input mutations are based on the code coverage

• White-box (scalability issues) / gray-box approach
• Program instrumentation is needed to check the code coverage (e.g., gcov, LLVM-based, …)
• It receives the feedback from the crash and create the next input for increasing coverage

− 2014s – Coverage-guided fuzzing with AFL

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 48

(KERNEL) FUZZING

• Kernel fuzzing != software fuzzing
− A crash will terminate the kernel, need to setup everything again
− Kernel binary instrumentation is too complex and computationally demanding
− Coverage-guided fuzzing: it is slow, feedback heavily relies on drivers and re-compilation
− Many indeterminism (threads, stateful-ness, others…)
− No generic ways to communicate with kernels and drivers, e.g., like stdin
− …

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 49

(KERNEL) FUZZING

• Prior work

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 50

KERNEL-AFL (KAFL)

• Intel Processor Trace
− Intel’s modern CPUs support tracing all the instructions executed by a process
− Hardware-supported feature, so it is

• Computationally efficient
• Reliable
• (Mostly) OS Independent
• No source code access is required

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 51

KERNEL-AFL (KAFL)

• Intel Processor Trace
− Intel’s modern CPUs support tracing all the instructions executed by a process
− Hardware-supported feature, so it is

• Computationally efficient
• Reliable
• (Mostly) OS Independent
• No source code access is required

− Solution approach
• Natively use Intel’s PT will not work
• It causes the kernel crash!

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 52

KERNEL-AFL (KAFL)

• Intel Processor Trace
− Intel’s modern CPUs support tracing all the instructions executed by a process
− Hardware-supported feature, so it is

• Computationally efficient
• Reliable
• (Mostly) OS Independent
• No source code access is required

− Solution approach
• Natively use Intel’s PT will not work
• Use a hypervisor
• But it is still expensive to monitor the entire VM

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 53

KERNEL-AFL (KAFL)

• Intel Processor Trace
− Intel’s modern CPUs support tracing all the instructions executed by a process
− Hardware-supported feature, so it is

• Computationally efficient
• Reliable
• (Mostly) OS Independent
• No source code access is required

− Solution approach
• Natively use Intel’s PT will not work
• Use a hypervisor
• But it is still expensive to monitor the entire VM
• Filter out the trace based on:

vCPUs, Supervisor, CR3 register, Instructions
• Fuzzer communicates with the VM using the agent

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 54

KERNEL-AFL (KAFL)

• Evaluation
− Performance: 17,100 executions per second, on 8 processors

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 55

KERNEL-AFL (KAFL)

• Evaluation
− Performance: 17,100 executions per second, on 8 processors
− Code-coverage: to find the 123 distinct paths, kAFL takes 5-7 min,

 while prior approach takes ~2 hours

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 56

KERNEL-AFL (KAFL)

• Evaluation
− Performance: 17,100 executions per second, on 8 processors
− Code-coverage: to find the 123 distinct paths, kAFL takes 5-7 min,

 while prior approach takes ~2 hours
− Discovered vulnerabilities

• Linux: keyctl null pointer dereferences (CVE-1026-8650)
• Linux: ext4 memory corruption
• Linux: ext4 error handling
• Windows: NTFS div-by-zero
• MacOS: HFS div-by-zero
• MacOS: HFS Assertion fail
• MacOS: HFS Use-after-free
• MacOS: APFS memory corruption

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 57

Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part II: OS Security
	Slide 2: Attention!
	Slide 3: Computer systems security
	Slide 4
	Slide 5: Preliminaries
	Slide 6: Preliminaries – cont’d
	Slide 7: Preliminaries – cont’d
	Slide 8: Preliminaries – cont’d
	Slide 9: Modern operating systems are complex and large
	Slide 10: Modern operating systems are complex and large – cont’d
	Slide 11: KASR: Kernel attack surface reduction
	Slide 12: KASR: Kernel attack surface reduction
	Slide 13: KASR: Kernel attack surface reduction
	Slide 14: KASR: Kernel attack surface reduction
	Slide 15: KASR: Kernel attack surface reduction
	Slide 16: KASR: Kernel attack surface reduction
	Slide 17: KASR: Kernel attack surface reduction
	Slide 18: KASR: Kernel attack surface reduction
	Slide 19: KASR: Kernel attack surface reduction
	Slide 20: KASR: Kernel attack surface reduction
	Slide 21
	Slide 22: Linux access control
	Slide 23: Linux access control – cont’d
	Slide 24: Linux access control – cont’d
	Slide 25: Linux access control – cont’d
	Slide 26: Linux access control – cont’d
	Slide 27: Linux access control – cont’d
	Slide 28: Linux access control – cont’d
	Slide 29: Linux access control – cont’d
	Slide 30: Linux access control – cont’d
	Slide 31: Demystify the setuid usage
	Slide 32: Demystify the setuid usage
	Slide 33: Demystify the setuid usage
	Slide 34: Security benefits
	Slide 35: Security recommendations
	Slide 46
	Slide 47: Preliminaries on fuzzing
	Slide 48: Preliminaries on fuzzing
	Slide 49: (Kernel) fuzzing
	Slide 50: (Kernel) fuzzing
	Slide 51: Kernel-afl (kAFL)
	Slide 52: Kernel-afl (kAFL)
	Slide 53: Kernel-afl (kAFL)
	Slide 54: Kernel-afl (kAFL)
	Slide 55: Kernel-afl (kAFL)
	Slide 56: Kernel-afl (kAFL)
	Slide 57: Kernel-afl (kAFL)
	Slide 58

