
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART III: ISOLATION

Sanghyun Hong
sanghyun.hong@oregonstate.edu

ANNOUNCEMENT

• HW3 will be out by next Monday

• 5/12 and 14 lectures will be online (SH’s business travel)
− On those dates, in-class presentations will also be online

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 2

PROBLEM: VULNERABLE CODE IN C

• Many security vulnerabilities
− Buffer overrun, use-after-free

− Return to LibC

− Malicious code injection

− …

• Unsafe memory operations
− One can overwrite function pointers

− One can overwrite a return address

− …

Secure AI Systems Lab :: CS 344 - Operating Systems I 3

PROBLEM: VULNERABLE CODE IN C

• Untrusted software modules
− Modern OSes have components and modules developed by 3rd parties

− Applications include modules or libraries, untrusted

− Or Internet browsers, running 3rd-party extensions

− … (more)

• They can do unsafe memory operations
− Modules, components, or libraries will run in an application’s address space

− Those components can

• Overwrite the data

• Steal confidential data

• Call malicious functions or call functions with malicious arguments

• … All efforts in subverting a target system

Secure AI Systems Lab :: CS 344 - Operating Systems I 4

 ISOLATION IS THE KEY IN COMPUTER SYSTEMS SECURITY

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 5

EXAMPLE: PROCESS ISOLATION

• Process segments
− Code segment

− Data segment

− Heap segment

− Stack segment

Secure AI Systems Lab :: CS 344 - Operating Systems I

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A (VA)

EXAMPLE: PROCESS ISOLATION

• Process segments
− Code segment

− Data segment

− Heap segment

− Stack segment

Secure AI Systems Lab :: CS 344 - Operating Systems I

Memory (PA)

OS

Address translation:
Virtual to Physical (OS II)

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A (VA)

Code (A)

Data (A)

Heap (A)

Stack (A)

EXAMPLE: PROCESS ISOLATION

• Process segments
− Code segment

− Data segment

− Heap segment

− Stack segment

Secure AI Systems Lab :: CS 344 - Operating Systems I

Memory (PA)

OS

Address translation:
Virtual to Physical (OS II)

Heap (A)

Data (A)

Code (A)

Stack (A)

Process A (VA)

Code (A)

Data (A)

Heap (A)

Stack (A)

Data (B)

Heap (B)

Code (B)

Stack (B)

Process B (VA)

Code (B)

Data (B)

Heap (B)

Stack (B)

EXAMPLE: PROCESS ISOLATION

• Process isolation
− Definition: Prevent Process A from reading/writing to Process B

− Why?

• Security reasons (e.g., data breach, system crash, …)

• Management reasons (e.g., easy to control, …)

− What happens if we access the other process’ memory

• Segmentation fault

Secure AI Systems Lab :: CS 344 - Operating Systems I

EXAMPLE: PROCESS ISOLATION

• Does it solve the problem?
− Well… probably no

• What if the untrusted modules, components, are libraries closely coupled in an app?

• What if those 3rd-party components are running within a process’ memory space

Secure AI Systems Lab :: CS 344 - Operating Systems I 10

STRAWMAN SOLUTION

• Two separate processes!
− Method:

• A process only runs trusted components

• The other process only runs un-trusted components

− Downside:
• Implementation overhead to programmers

• Performance overhead due to many IPC calls (CTX switch)

• Hole punching (Link)!
− Definition (from computer networking):

• A technique that allows two or more parties to communicate directly each other

− Downside:

• Potentially ignore the security mechanisms (e.g., firewalls)

• Potentially increase overheads to manage such connections separately

Secure AI Systems Lab :: CS 344 - Operating Systems I 11

https://en.wikipedia.org/wiki/Hole_punching_(networking)

 ISOLATION IS THE KEY IN COMPUTER SYSTEMS SECURITY

 - SANDBOXING AND TRUSTED ENCLAVE

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 12

SOFTWARE-BASED FAULT ISOLATION (SFI)

• SFI Goals
− To make the isolation cheap

− To use a single address space:

• Technical approaches
− Run untrusted code, modules, or libraries in the same address space as trusted code

− Run untrusted code in sandbox

• Key idea
− One can add instructions before memory writes and jumps

− Those instructions inspect the target addresses to constrain their behaviors

Secure AI Systems Lab :: CS 344 - Operating Systems I 13

SOFTWARE-BASED FAULT ISOLATION

• Unit of operations: fault domain
− SFI puts untrusted code within a fault domain

− The fault domain is in the same address space as trusted code

• The fault domain has
− Unique ID

− Code segment

− Data segment

− Segment ID: unique high-order bits for a segment

Secure AI Systems Lab :: CS 344 - Operating Systems I 14

SOFTWARE-BASED FAULT ISOLATION

• Unit of operations: fault domain – an example
− Segment ID are 12 high-order bits

− Separate segments for code and data

Secure AI Systems Lab :: CS 344 - Operating Systems I 15

SOFTWARE-BASED FAULT ISOLATION

• Sandboxing memory: segment matching
− Jump within its fault domain segments

− Write within its fault domain segments

• It supports two memory addresses
− Direct, e.g., jmp 0xdeadbeef

− Indirect, e.g., store %ebp %eap

• Protection
− Direct: check the computed address

Secure AI Systems Lab :: CS 344 - Operating Systems I 16

SOFTWARE-BASED FAULT ISOLATION

• Sandboxing memory: segment matching
− Jump within its fault domain segments

− Write within its fault domain segments

• It supports two memory addresses
− Direct, e.g., jmp 0xdeadbeef

− Indirect, e.g., store %ebp %eap

• Protection
− Direct: check the computed address

− Indirect: use four dedicated registers
• The code and data segment addresses

• The segment shift amount

• The segment ID

Secure AI Systems Lab :: CS 344 - Operating Systems I 17

SOFTWARE-BASED FAULT ISOLATION

• Sandboxing memory: segment matching
− Jump within its fault domain segments

− Write within its fault domain segments

• It supports two memory addresses
− Direct, e.g., jmp 0xdeadbeef

− Indirect, e.g., store %ebp %eap

• Performance optimization 1: guard-zones
− Use compiler-base approaches

− Use instructions of register+offset

− Offsets are +/-64K, e.g., in MIPS

Secure AI Systems Lab :: CS 344 - Operating Systems I 18

SOFTWARE-BASED FAULT ISOLATION

• Sandboxing memory: segment matching
− Jump within its fault domain segments

− Write within its fault domain segments

• It supports two memory addresses
− Direct, e.g., jmp 0xdeadbeef

− Indirect, e.g., store %ebp %eap

• Performance optimization 2: stack pointer
− Avoid sandboxing all the read/write operations to SP

− Stack pointer is read more often than its written

− Sandbox the process of writing the stack pointer (it’s always safe)

− Reduces the number of instructions sandboxed

Secure AI Systems Lab :: CS 344 - Operating Systems I 19

SOFTWARE-BASED FAULT ISOLATION

• Sandboxing memory: segment matching
− Jump within its fault domain segments

− Write within its fault domain segments

• Data sharing
− Do it on the virtual address spaces

− Read-only sharing

− Virtual address aliasing
• The lower bits are the same in the virtual addresses of different segments

• Once the untrusted code accesses a shared object,
it first translates the shared addresses into the corresponding addresses
within the fault domain

Secure AI Systems Lab :: CS 344 - Operating Systems I 20

SOFTWARE-BASED FAULT ISOLATION

• Sandboxing memory: segment matching
− Jump within its fault domain segments

− Write within its fault domain segments

• Data sharing
− Do it on the virtual address spaces

− Read-only sharing

− Virtual address aliasing

• RPC for cross-fault domain communication: jump table
− In the read-only region

− A collection of code addresses written by trusted parties

− Only called via trusted call and return stubs

Secure AI Systems Lab :: CS 344 - Operating Systems I 21

SANDBOXING EVALUATION

• Encapsulation overhead
− 4.3% execution time overhead across different benchmarks

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 22

 ISOLATION IS THE KEY IN COMPUTER SYSTEMS SECURITY

 - SANDBOXING AND TRUSTED ENCLAVE

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 23

	Slide 1: CS 578: Cyber-security Part III: Isolation
	Slide 2: Announcement
	Slide 3: Problem: vulnerable code in C
	Slide 4: Problem: vulnerable code in C
	Slide 5
	Slide 6: Example: process isolation
	Slide 7: Example: process isolation
	Slide 8: Example: process isolation
	Slide 9: Example: process isolation
	Slide 10: Example: process isolation
	Slide 11: Strawman solution
	Slide 12
	Slide 13: Software-based fault isolation (SFI)
	Slide 14: Software-based fault isolation
	Slide 15: Software-based fault isolation
	Slide 16: Software-based fault isolation
	Slide 17: Software-based fault isolation
	Slide 18: Software-based fault isolation
	Slide 19: Software-based fault isolation
	Slide 20: Software-based fault isolation
	Slide 21: Software-based fault isolation
	Slide 22: Sandboxing evaluation
	Slide 23

