
Secure AI Systems Lab

CS 578: CYBER-SECURITY

PART III: SIDE-CHANNELS

Sanghyun Hong
sanghyun.hong@oregonstate.edu

HOW CAN WE BREAK THE ISOLATION?
 - ROWHAMMER BREAKS INTEGRITY

 - SIDE-CHANNELS BREAK CONFIDENTIALITY

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 2

SPECTRE

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 3

• Speculative execution is a CPU optimization
− Instruction cycle: fetch – decode – execute

− Instruction pipeline: instruction-level parallelism (on a single CPU)

PRELIMINARIES ON SPECULATIVE EXECUTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 4

• Speculative execution is a CPU optimization
− Out-of-order execution for speed-ups

− Use to reduce the cost of, e.g., conditional branch

• The first line causes a delay until x arrives from the memory

• The time it takes to load x from memory
needs more cycles than running instructions

• A naïve solution is to wait…
but do we have a better solution?

PRELIMINARIES ON SPECULATIVE EXECUTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 5

• Speculative execution is a CPU optimization
− Out-of-order execution for speed-ups

− Use to reduce the cost of, e.g., conditional branch

• The first line causes a delay until x arrives from the memory

• The time it takes to load x from memory
needs more cycles than running instructions

• Run the next instructions in the instruction pipeline

PRELIMINARIES ON SPECULATIVE EXECUTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 6

• Speculative execution is a CPU optimization
− Out-of-order execution for speed-ups

− Use to reduce the cost of, e.g., conditional branch

• The first line causes a delay until x arrives from the memory

• The time it takes to load x from memory
needs more cycles than running instructions

• Run the next instructions in the instruction pipeline

− If the x satisfies the “if” condition, then commit – performance gain

− Otherwise, discard the faulty work

PRELIMINARIES ON SPECULATIVE EXECUTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 7

• Speculative execution is a CPU optimization
− Out-of-order execution for speed-ups

− Use to reduce the cost of, e.g., conditional branch

• The first line causes a delay until x arrives from the memory

• The time it takes to load x from memory
needs more cycles than running instructions

• Run the next instructions in the instruction pipeline

− If the x satisfies the “if” condition, then commit – performance gain

− Otherwise, discard the faulty work

• CPU makes its errors on its on!

PRELIMINARIES ON SPECULATIVE EXECUTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 8

• Attack scenario

− The above code runs in secure environments

− The attacker wants to read the memory

− The attacker controls the variable x

− array1_size and array2 is not in cache

− Suppose the memory status is like the left figure
• The array1_size is 8 bytes

SPECTRE ATTACK (VARIANT 1) – CONDITIONAL BRANCH MISPREDICTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 9

• Attack scenario

− The variable x (control) is set to > 8 bytes

− CPU runs speculative execution as if “if” is true

− CPU reads the address array1 base + x
• It returns the secret byte = 09 (fast – in cache)

• Requests memory at (array2 base + 09 * 4096)

• Brings array2[09*4096] into cache

• Realize the “if” statement is false, then discard this work

− The control returns to the caller

− The attacker uses cache side-channels to read 09

SPECTRE ATTACK (VARIANT 1) – CONDITIONAL BRANCH MISPREDICTION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 10

• Branch predictor
− Every 5-7 instructions of a program has a branch (a lot!)

− Costly
• If the jump address is in a cache – fast

• If the jump address is not in a cache – slow, wait for the address to come from memory

− Consider an example C program below

SPECTRE ATTACK (VARIANT 2) – POISONING INDIRECT BRANCHES

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 11

• Branch predictor
− Branch predictor presumably jumps to a predicted address

• Based on the branch history (a collection of previous jump addresses)

− On an Intel Haswell, ~29 prior addresses are used

− On an AMD Ryzen, ~9 prior branches are used

• Run a jump

− If the memory address is the correct one – commit

− If the address is incorrect – discard faulty work

SPECTRE ATTACK (VARIANT 2) – POISONING INDIRECT BRANCHES

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 12

• Branch predictor
− Branch predictor presumably jumps to a predicted address

• Based on the branch history (a collection of previous jump addresses)

− On an Intel Haswell, ~29 prior addresses are used

− On an AMD Ryzen, ~9 prior branches are used

• Run a jump

− If the memory address is the correct one – commit

− If the address is incorrect – discard faulty work

− But what if it jumps to the address, it should not to?

SPECTRE ATTACK (VARIANT 2) – POISONING INDIRECT BRANCHES

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 13

• Attack scenario

− sleep() function is done with $ebx and $edi

− The attacker controls $ebx and $edi, and they know $edx

− The attacker sets $edi to the base address of of the probe array m

− The attacker, for example, sets it to “m – 0x13BE13BD – edx”

− The instruction in the second line will load m into the cache

− Then they do the same cache side-channel to probe the content

SPECTRE ATTACK (VARIANT 2) – POISONING INDIRECT BRANCHES

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 14

• Mitigations
− Disable speculative operations (lfense instruction)

− Prevent access to sensitive (or secret) data

− Prevent data from entering covert channels

− Limit data extraction from covert channels

− Prevent branch poisoning (retpolines1)

SPECTRE ATTACK

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 15

https://support.google.com/faqs/answer/7625886

Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current

https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part III: Side-channels
	Slide 2
	Slide 3
	Slide 4: Preliminaries on speculative execution
	Slide 5: Preliminaries on speculative execution
	Slide 6: Preliminaries on speculative execution
	Slide 7: Preliminaries on speculative execution
	Slide 8: Preliminaries on speculative execution
	Slide 9: Spectre attack (variant 1) – conditional branch misprediction
	Slide 10: Spectre attack (variant 1) – conditional branch misprediction
	Slide 11: Spectre attack (variant 2) – poisoning indirect branches
	Slide 12: Spectre attack (variant 2) – poisoning indirect branches
	Slide 13: Spectre attack (variant 2) – poisoning indirect branches
	Slide 14: Spectre attack (variant 2) – poisoning indirect branches
	Slide 15: Spectre attack
	Slide 16

