CS 578: CYBER-SECURITY
PART Ill: SIDE-CHANNELS

Sanghyun Hong

sanghyun.hong@ oregonstate.edu

D
OregonState SAIL
&E University Secure Al Systems Lab

How CAN WE BREAK THE ISOLATION?
- ROWHAMMER BREAKS
- SIDE-CHANNELS BREAK

eeeee Al Systems Lab (SAIL) :: CS578 - Cyber-security

SPECTRE

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRELIMINARIES ON SPECULATIVE EXECUTION

» Speculative execution is a CPU optimization
— Instruction cycle: fetch — decode — execute
— Instruction pipeline: instruction-level parallelism (on a single CPU)

Instr. No. Pipeline Stage
1 IF [1D | EX |MEM WEI-
2 IF | 1D | EX |[MEM] WE
3 IF [10 | EX [MEM|WE
£ IF [IO | EX [MEM
5 IF | 1D | EX
s |1|2]3|a|s5|6]|7

(o
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 4

PRELIMINARIES ON SPECULATIVE EXECUTION

» Speculative execution is a CPU optimization

- Out-of-order execution for speed-ups
- Use to reduce the cost of, e.g., conditional branch

if (x < arrayl_size)
y = array2larrayl[x] * 4096];

* The first line causes a delay until x arrives from the memory

* The time it takes to load x from memory 100,000
needs more cycles than running instructions

* A naive solution is to wait...
but do we have a better solution?

10,000

1,000 I
Processor
100 Processor-Memory
/ Performance Gap
10

Memory

Performance

1 L L L L
1980 1985 1990 1995 2000 2005 2010
Year

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 5

PRELIMINARIES ON SPECULATIVE EXECUTION

» Speculative execution is a CPU optimization
- Out-of-order execution for speed-ups
- Use to reduce the cost of, e.g., conditional branch

if (x < arrayl_size)
y = array2larrayl[x] * 4096];

* The first line causes a delay until x arrives from the memory

* The time it takes to load x from memory
needs more cycles than running instructions

* Run the next instructions in the instruction pipeline

if <in bounds>

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRELIMINARIES ON SPECULATIVE EXECUTION

» Speculative execution is a CPU optimization
- Out-of-order execution for speed-ups
- Use to reduce the cost of, e.g., conditional branch

if (x < arrayl_size)
y = array2larrayl[x] * 4096];

* The first line causes a delay until x arrives from the memory

* The time it takes to load x from memory
needs more cycles than running instructions

* Run the next instructions in the instruction pipeline

- If the x satisfies the “if” condition, then commit — performance gain
- Otherwise, discard the faulty work

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

PRELIMINARIES ON SPECULATIVE EXECUTION

» Speculative execution is a CPU optimization
- Out-of-order execution for speed-ups
- Use to reduce the cost of, e.g., conditional branch

if (x < arrayl_size)
y = array2larrayl[x] * 4096];

The first line causes a delay until x arrives from the memory

The time it takes to load x from memory
needs more cycles than running instructions

Run the next instructions in the instruction pipeline
- If the x satisfies the “if” condition, then commit — performance gain
- Otherwise, discard the faulty work

CPU makes its errors on its on!

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

SPECTRE ATTACK (VARIANT 1) — CONDITIONAL BRANCH MISPREDICTION

e Attack scenario

if (x < arrayl_size)
y = array2[arrayl[x] = 4096];

Memory & Cache Status

— The above code runs in secure environments arrayl size = 00000008
— The attacker wants to read the memory Memory at arzayl base address:
) 8 bytes of data (value doesn’t matter)
— The attacker controls the variable x [... lots of memory up to arrayl base+N...]
. . . 09 F1 98 CC 90... (something secret)
- arrayl_size and array2 is not in cache x
— -) . array2[0*512]
- Suppose the memory status is like the left figure array2(1+512]
array &
* The arrayl_size is 8 bytes array2[3*512]

array2[4*512]
array2[5*512]
array2[6*512] (Contentsdon’t matter

array2[7*512] only care about cache status

array2[8*512] Uncached Cached
array2[9*512]

array2[10*512]
array2[11*512]

Oregon State)
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 9

SPECTRE ATTACK (VARIANT 1) — CONDITIONAL BRANCH MISPREDICTION

e Attack scenario

if (x < arrayl_size)
y = array2[arrayl[x] = 4096];

Memory & Cache Status

— The variable x (control) is set to > 8 bytes arrayl size = 00000008
— CPU runs speculative execution as if “if” is true Ay et SEEE L s i
8 bytes of data (value doesn’t matter)
— CPU reads the address array1 base + x [... lots of memory up to arrayl base+N...]
. 09 F1 98 CC 90... (something secret)
* It returns the secret byte = 09 (fast — in cache) <
array2[0*512]
* Requests memory at (array2 base + 09 * 4096) array2[1*512]
* Brings array2[09*4096] into cache e e

array2[4*512]
array2[5*512]

* Realize the “if” statement is false, then discard this work
array2[6*512] (Contentsdon’t matter
array2[7*512] only care about cache status

— The control returns to the caller
array2[8*512]

— The attacker uses cache side-channels to read 09 TR Uncached Cached

array2[10*512]
array2[11*512]

Oregon State p
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 10

SPECTRE ATTACK (VARIANT 2) — POISONING INDIRECT BRANCHES

* Branch predictor

- Every 5-7 instructions of a program has a branch (a lot!)
- Costly

 If the jump addressisin a cache —fast
 If the jump address is not in a cache — slow, wait for the address to come from memory

— Consider an example C program below

for(i=0;i<m;i++)
for(j=0; j<n ; j++)
begin S1; S2; ...; Sk end;

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

11

SPECTRE ATTACK (VARIANT 2) — POISONING INDIRECT BRANCHES

* Branch predictor

— Branch predictor presumably jumps to a predicted address
* Based on the branch history (a collection of previous jump addresses)
- On an Intel Haswell, ~29 prior addresses are used
— On an AMD Ryzen, ~9 prior branches are used
* Runajump
- If the memory address is the correct one — commit
- If the address is incorrect — discard faulty work

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

12

SPECTRE ATTACK (VARIANT 2) — POISONING INDIRECT BRANCHES

* Branch predictor

— Branch predictor presumably jumps to a predicted address
* Based on the branch history (a collection of previous jump addresses)
- On an Intel Haswell, ~29 prior addresses are used
— On an AMD Ryzen, ~9 prior branches are used
* Runajump
- If the memory address is the correct one — commit
- If the address is incorrect — discard faulty work
- But what if it jumps to the address, it should not to?

 Context A | ‘ Context B |

27?7

call [function] call [function]mx
function A — spectre gadget <«

Predictor

ojenoads

function B legit function

Oregon State
University
Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

13

SPECTRE ATTACK (VARIANT 2) — POISONING INDIRECT BRANCHES

e Attack scenario

adc edi,dword ptr [ebxtedx+13BE13BDh]
adec dl,byte ptr [edi]

- sleep() function is done with Sebx and Sedi

— The attacker controls Sebx and Sedi, and they know Sedx

— The attacker sets Sedi to the base address of of the probe array m
- The attacker, for example, sets it to “m—0x13BE13BD — edx”

- The instruction in the second line will load m into the cache

- Then they do the same cache side-channel to probe the content

AN
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

SPECTRE ATTACK

* Mitigations
- Disable speculative operations (instruction)
- Prevent access to sensitive (or secret) data
- Prevent data from entering covert channels
- Limit data extraction from covert channels
- Prevent branch poisoning ()

Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

https://support.google.com/fags/answer/7625886
15

Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current

Tp
OregonState SAIL
& UanEI‘Slty Secure Al Systems Lab

https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current
https://secure-ai.systems/courses/Sec-Grad/current

	Slide 1: CS 578: Cyber-security Part III: Side-channels
	Slide 2
	Slide 3
	Slide 4: Preliminaries on speculative execution
	Slide 5: Preliminaries on speculative execution
	Slide 6: Preliminaries on speculative execution
	Slide 7: Preliminaries on speculative execution
	Slide 8: Preliminaries on speculative execution
	Slide 9: Spectre attack (variant 1) – conditional branch misprediction
	Slide 10: Spectre attack (variant 1) – conditional branch misprediction
	Slide 11: Spectre attack (variant 2) – poisoning indirect branches
	Slide 12: Spectre attack (variant 2) – poisoning indirect branches
	Slide 13: Spectre attack (variant 2) – poisoning indirect branches
	Slide 14: Spectre attack (variant 2) – poisoning indirect branches
	Slide 15: Spectre attack
	Slide 16

