ATTENTION REQUIRED

* Forecasts
- 6.04: Final presentation |
presentation + Q&A (strict)
* Presentation cover:

- 1-2 slide on your research motivation and goals
- 1-2 slides on your hypotheses and experimental design
- 3-4 slides on your most interesting results
- 1 slides on your conclusion and implications

- 6.09: Final exam (unlimited trials, 24 hours)

- 6.11: Late submissions for HW 1, 2, 3, and 4

- 6.11: Late submissions for paper critiques
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ADVERSARIAL EXAMPLES
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ADVERSARIAL EXAMPLES

* A test-time input to a neural network
- Crafted with the objective of fooling the network’s decision(s)
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NOT EVERY ADVERSARIAL EXAMPLES ARE INTERESTING

* A test-time input to a neural network

- Crafted with the objective of fooling the network’s decision(s)
- That looks like a natural test-time input
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NOT EVERY ADVERSARIAL EXAMPLES ARE INTERESTING

* A test-time input to a neural network
- Crafted with the objective of fooling the network’s decision(s)

+0.007 x fif

Prediction: Panda Human-imperceptible Noise Prediction: Gibbon
v Goodfellow et al., Explaining and Harnessing Adversarial Examples, International Conference on Learning Representations (ICLR), 2015.
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EXPLOITING ADVERSARIAL EXAMPLES IN REAL-WORLD

* from the security perspective: it makes ML-enabled systems unavailable
' <o Real-World 5

Attacker can pretend to be
deploy the attack using adh
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ADVERSARIAL EXAMPLES ARE COUNTER-INTUITIVE

* from the ML perspective: it is counter-intuitive

&
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perturbation

88% tabby cat

99% guacamole
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IMAIN RESEARCH QUESTION

 How can we train neural networks robust to adversarial examples?
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THREAT MODELING — ATTACKER

» Test-time (evasion) attack

- Suppose
e Atest-time input (x, y)
* (x,y)~D, D: data distribution; andy € [k]; x € [0,1]

* ANN model f and its parameters 6
(8, x,y): aloss function
- Objective
* Find an x®® = x + § such that f(x%%) = y while ||5]], < ¢
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THREAT MODELING — ATTACKER

» Test-time (evasion) attack

- Suppose
e Atest-time input (x, y)
* (x,y)~D, D: data distribution;
* ANN model f and its parameters 6

(8, x,y): aloss function

— Attacker’s objective

* Find an x%?’ = x 4 § such that
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andy € [k]; x € [0,1]

while ||8]], <
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THREAT MODELING — DEFENDER

» Test-time (evasion) attack

- Suppose
e Atest-time input (x, y)
* (x,y)~D, D: data distribution; andy € [k]; x € [0,1]

* ANN model f and its parameters 6
(8, x,y): aloss function
— Attacker’s objective
* Find an x%% = x + § such that while [|6]], < €

- Defender’s objective
* Train a neural network f robust to adversarial attacks
* Find ¢ such that where
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PUTTING ALL TOGETHER

test-time (evasion) attack
- Suppose
e Atest-time input (x, y)
* (x,y)~D, D: data distribution; x € R* and y € [k]; x € [0,1]
* ANN model f and its parameters 6
* L(6,x,y): aloss function

optimization (between attacker’s and defender’s objectives)
* Find where while [|5]], < €

* s:aset of test-time samples

SADDLE POINT PROBLEM: INNER MAXIMIZATION AND OUTER MINIMIZATION
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INNER MAXIMIZATION — THE FIRST-ORDER ADVERSARY

* FGSM (Fast Gradient Sign Method)

x+ esgn(VyL(0,x,y)).

— FGSM can be viewed as a simple one-step toward maximizing the loss (inner part)

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security



INNER MAXIMIZATION — THE FIRST-ORDER ADVERSARY

* FGSM (Fast Gradient Sign Method)

x+ esgn(VyL(0,x,y)).

— FGSM can be viewed as a simple one-step toward maximizing the loss (inner part)

* PGD (Projected Gradient Descent)
A =TI, 5 (2 + asgn(VLL(8, x,1))) -

— Multi-step adversary; much stronger than FGSM attack
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INNER MAXIMIZATION — THE FIRST-ORDER ADVERSARY

* PGD (Projected Gradient Descent)

Xt =TI, 5 (2 + asgn(VLL(6, x,1))) -

— Multi-step adversary; much stronger than FGSM attack

- Hyper-parameters
* t: number of iterations
* «: step-size
* &: perturbation bound |x* — x|,
- Notation: PGD-t, bounded by &, used the step-size of a
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OUTER MINIMIZATION — ADVERSARIAL TRAINING

* PGD (Projected Gradient Descent)

Xt =TI, 5 (2 + asgn(VLL(6, x,1))) -

— Multi-step adversary; much stronger than FGSM attack

* Adversarial training
- Make a model do correct prediction on adversarial examples
— Training procedure
* At each iteration of training

* Craft PGD-t adversarial examples
* Update the model towards making it correct on those adv examples
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ADVERSARIAL (ROBUST) TRAINING

* Robust training

— Deep neural networks (DNNs) are universal function approximators!
— DNNs may learn to be resistant to adversarial examples (a desirable function)

- Adversarial training (AT):
Repeat:
1. Select minibatch B, initialize gradient vector g := 0
2. For each (z,y) in B:
a. Find an attack perturbation 6* by (approximately) optimizing
§* = argmax {(hg(x + 9),y)

6] <e

b. Add gradient at 6*
g:=g+ Vel(hg(x +6%),y)

3. Update parameters 6

R —
Hornik et al., Multilayer feedforward networks are universal approximators, Neural Networks 1989
Orggon‘State https://adversarial-ml-tutorial.org/adversarial_training/
& University
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EVALUATION

* Findings

- (1, 3) PGD increases the loss values in a fairly consistent way
- (2, 4) Models trained with PGD attacks are resilient to the same attacks
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EVALUATION

* Findings

- Models trained with PGD attacks are resilient to the same attacks
— Final loss of PGD attacks are concentrated (both for defended/undefended models)

Adversarial Training MNIST

log(frequency)

0 40 80 120 160 O 40 80 120 160 O 40 80 120 1600 40 éO 120 160 0 40 80 120 160
Loss value Loss value Loss value Loss value Loss value

CIFAR10

log(frequency)

0 25 50 75 100 O 25 50 75 1000 25 50 75 100 0 25 50 75 1000 25 50 75 100
Loss value Loss value Loss value Loss value Loss value

Oregon State
&7 University
i Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security



EVALUATION

* Why adversarial training (AT) works?

— Capacity is crucial for the robustness: robust models need complex decision boundary
— Capacity alone helps: high-capacity models show more robustness w/o AT
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EVALUATION

e ...Cont'd
— Capacity is crucial for the robustness: robust models need complex decision boundary
— Capacity alone helps: high-capacity models show more robustness w/o AT
— AT with weak attacks (like FGSM) can’t defeat a strong one like PGD
- (optional) Robustness may be at odds with accuracy

MNIST
: : : : : ~Natural
100 100 1 100 @ i - EGSM
2 80 80 80 ° - PGD
g 60| 1 60 60 o 0.1-t ]
8 40 40+ 1 40 g
<ﬂ 20F 1 201 1 20f 0.01 =
0 0 0 %
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Capacity scale Capacity scale Capacity scale Capacity scale
CIFAR10
Simple| Wide  Simple| Wide Simple| Wide Simple | Wide
Natural 92.7% [95.2% 87.4% |90.3% 79.4% |87.3% 0.00357/0.00371
FGSM  27.5% |32.7% 90.9% |95.1% 51.7% |56.1% 0.0115 |0.00557
PGD 0.8% |3.5% 0.0% | 0.0% 43.7% |45.8% 1.11 |0.0218
Sgg\%;gi?;atc | (a) Standard training (b) FGSM training (c) PGD training (d) Training Loss
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DATA POISONING VS. ADVERSARIAL ATTACKS

* Limits of adversarial attacks
- In some cases, an attacker cannot perturb test inputs

- But they still want to cause some potential harms to a model’s behaviors
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(UNINTENTIONAL) EXPLOITATION OF DATA POISONING

* Inherent risk of ML-enabled systems
- Conventional systems have boundaries between the system and the outside world

- In ML, models learn behaviors from the training data-coming from the outside
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(INTENTIONAL) EXPLOITATION OF DATA POISONING

* Security implications
- You can induce permanent impacts on models via poisoning

Pcworld NEWS BESTPICKS REVIEWS HOW-TO DEALS ¥

Home / Security / News

NEWS

Kaspersky denies faking anti-
virus info to thwart rivals

A Reuters article quoted anonymous sources saying Kaspersky tagged

benign files as dangerous, possibly harming users.

000DOOO Poisoned
F @ Alyson
By Joab Jackson ace Hannjgan
PCWorld | AUG 14, 2015 10:50 AM PDT ReCOgnition
Responding to allegations from anonymous ex-employees, security = firm SyStem
Kaspersky Lab has denied planting misleading information in its public ‘ _\'
virus reports as a way to foil competitors. Person1 ! a,_,m J
=
A

“Kaspersky Lab has never conducted any secret campaign to trick @
competitors into generating false positives to damage their market Wrong Keys
standing,” reads an email statement from the company. “Accusations by Person 2

anonymous, disgruntled ex-employees that Kaspersky Lab, or its CEQ, was

involved in these incidents are meritless and simply false.” X L

pan:
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THREAT MODELING

* Goal
- Manipulate a ML model’s behavior by compromising the training data
- Harm the of the training data

* Capability

- Perturb a subset of samples (D,) in the training data
- Inject a few malicious samples (D) into the training data

* Knowledge
— D¢ygin: training data
— Dypqt: test-set data
- f:amodel architecture and its parameters 6
- A: training algorithm (e.g., SGD)

Oregon State
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THREAT MODELING

* Goal
- Manipulate a ML model’s behavior by contaminating the training data
- Harm the of the training data

* Two well-studied objectives
- Indiscriminate attack: | want to degrade a model’s accuracy
- Targeted attack: | want misclassification of a specific test-time data

Oregon State
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CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY

\ & Linear model (SVM)
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CONCEPTUAL ANALYSIS OF THE POISONING VULNERABILITY
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CONCEPTUAL ANALYSIS OF THE VULNERABILITY TO POISONING

Neural Network =>

Oregon State
University
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\ & Linear model (SVM)

TO% Training Instances = Pristine Decision Boundary
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THREAT MODELING — TARGETED ATTACKS

* Goal
— Targeted attack
- Model causes a misclassification of (x;, y;), while preserving acc. on D,,;

* Capability
- Know a target (x¢, y;)

- Pick p candidates from test data (x¢y,¥¢1), (Xc2... and craft poisons (x,1, ¥p1), (Xp2...
- Inject them into the training data

* Knowledge
- D¢y :training data
— Dyt test-set data (validation data)
- f:amodel and its parameters 6

- A: training algorithm (e.g., mini-batch SGD)

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security
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THREAT MODELING — (CLEAN-LABEL) TARGETED ATTACKS

* Goal
— Targeted clean-label (y., = y,,) attack
- Model causes a misclassification of (x;, y;), while preserving acc. on D,,;

* Capability
- Know a target (x¢, y;)

- Pick p candidates from test data (x¢y,¥¢1), (Xc2... and craft poisons (x,1, ¥p1), (Xp2...
- Inject them into the training data

* Knowledge

— Dyt test-set data (validation data)
- f:amodel and its parameters 6

AR
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BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS

~ e |1 o N:.
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Input x Feature extractor: f(+) Classifier

* A conventional view:

- Convolutions: extract features, embeddings, latent representations, ...
- Last layer: uses the output for a classification task

Oregon State
&7 University
i Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 34



BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS
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Input x Feature extractor: f(+) Classifier

* Input-space # Feature-space:

- Two samples similar in the input-space can be far from each other in the feature-space
- Two samples very different in the input-space can be close to each otherin f
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THE KEY IDEA: FEATURE COLLISION

* Goal
- You want your any poison to be closer to your target (x¢, y;) in the feature space

Fish Decision boundary

‘.,,; Oregon State
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THE KEY IDEA: FEATURE COLLISION

* Goal
- You want your any poison to be closer to your target (x¢, y;) in the feature space

Decision boundary

The Fish Becomes DogFish! l

ég‘ri; Oregon State
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THE KEY IDEA: FEATURE COLLISION

* Goal
- You want your any poison to be closer to your target (x¢, y;) in the feature space

Decision boundary

“.,,; Oregon State
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THE KEY IDEA: FEATURE COLLISION

* Goal
— Any poison to be closer to your target (x¢, y;) in the feature space
- Objective:

p = argmin [ £(x) — f(£)l;+ 8 )x — |3

- Optimization:

Algorithm 1 Poisoning Example Generation

Input: target instance ¢, base instance b, learning rate A
Initialize x: xg < b

Define: L,(z) = || f(x) — f(t)||?

for : = 1 to mazlters do

Forward step: Z; = x;—1 — AV, Ly(zi—1) // construct input perturbations
Backward step: z; = (Z; + A8b)/(1 + BA) // decide how much we will perturb
end for

Oregon State
University
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EVALUATIONS

* Scenarios
- Scenario 1: Transfer learning
- Scenario 2: End-to-end learning

ﬂﬁ. o
Oregon State
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EVALUATIONS: TRANSFER LEARNING

* Setup
- Dataset: Dog vs. Fish (ImageNet)
- Models: Inception-V3 (Pretrained on ImageNet)

* “one-shot kill” Attacks
— Goal: Dog > Fish or Fish > Dog | All 1099 targets from the test-set
- Craft a poison using a single image chosen from the other class
- Train the last layer on Dy U (xp, ¥) and check if the target’s label is flipped

* Results
- The attack succeeds with 100% accuracy
- The accuracy drop caused by the attack is 0.2% on average

AR
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EVALUATIONS: TRANSFER LEARNING

* Examples

Target instances from Fish class

Clean
Base :

Poison
instances
made for
fish class
from dog
base
instances

Target instances from Dog class

Poisons
made for
dog class
from fish
bases

LR
e

Oregon State
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EVALUATIONS: END-TO-END LEARNING

* Setup
- Dataset: CIFAR-10
- Models: AlexNet (Pretrained on CIFAR-10)

* “end-to-end” Attacks
- Goal: Bird > Dog or Airplane > Frog
- Craft 1-70 poisons using the images chosen from the (Dog or Frog) class
- Trick: watermarking!
- Train the entire model on Dy, U (xp, yp) and check the misclassification rate

AR
Oregon State
University

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security

43



EVALUATIONS: END-TO-END LEARNING

e Results

success rates of various experiments 0.9 [ Successful
0.8 I Unsuccessful

—— bird-vs-dog | opacity 30%

. , . 0.7
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EVALUATION: EXPLOITATION IN REAL-WORLD

e Results

Google Cloud Platform

Model
unpoisoned v
Test your model
Up 10 10 images can be uploaded at a time
Predictions
1 object
bird — 0.82

Google Cloud Platform

Model
poisoned A

Test your model

UPLOAD IMAGES

Up to 10images can be uploaded at a time

Predictions

1 object

dog — 0.69

L’T;,; Oregon State

success rate
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MEMBERSHIP INFERENCE
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PRIVACY IN MACHINE LEARNING

* Membership inference attacks
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Does the sensitive training set contain a target record?

[ Prompt

Response |
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ship figuri
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House version also inclu=\ndes
| £30 million for research and
development ...
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THREAT MODELING

* Threat model
- An adversary A wants to know
— if a sample (x, y)~ D is the member of
- the training set S of an ML model f or not

o predict(data) (

' (data record, class label)

_________ —

[ Attack Model

data € training set ?

Oregon State
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THREAT MODELING

* Threat model
- Suppose

* (x,y) ~ D; x is a set of features, y is a response
* Sisatraining set drawn from D™

* Aisalearning algorithm, [ is the loss function

e Agisamodel trained on S

A is an adversary

Oregon State Yeom et al., Privacy Risks in Machine Leaming: Analyzing the Connection to Overfitting
University
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THREAT MODELING

* Threat model
- Suppose

* (x,y) ~ D; x is a set of features, y is a response
* Sisatraining set drawn from D™

* Aisalearning algorithm, [ is the loss function

e Agisamodel trained on S

* A isan adversary

- Membership experiment!
« Sample S ~ D", and let A; = A(S)
* Choose b « {0, 1} uniformly at random
e Drawz~Sifb=0,orz~Difb =1
« ExpM(A,A,n,D)is1if A(z,A;,n,D) = b and 0 otherwise. A must output 0 or 1

Oregon State Yeom et al., Privacy Risks in Machine Leaming: Analyzing the Connection to Overfitting
University
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THREAT MODELING

* Threat model

- Membership experiment?!
* Sample S ~ D™, and let A, = A(S)
* Choose b « {0, 1} uniformly at random
e Drawz~Sifb=0,orz~Difb =1
« ExpM(A,A,n,D)is1if A(z,A;,n,D) = b and 0 otherwise. A must output 0 or 1

- Membership advantage!

« AdvM(A,A,n,D) = Pr[A = 0|b = 0] — Pr[A = 0|b = 1]
= 2 Pr[ExpM(A,A,n,D) = 1] — 1

Orcg()n State Yeom et al., Privacy Risks in Machine Leaming: Analyzing the Connection to Overfitting
University
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Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current
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