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MEMBERSHIP INFERENCE
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• Membership inference attacks

PRIVACY IN MACHINE LEARNING
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THREAT MODELING

• Threat model
− An adversary 𝒜 wants to know 

− if a sample 𝑥, 𝑦 ~ 𝐷 is the member of 

− the training set 𝑆 of an ML model 𝑓 or not
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THREAT MODELING

• Threat model
− Suppose

• 𝑥, 𝑦  ~ 𝐷; 𝑥 is a set of features, 𝑦 is a response

• 𝑆 is a training set drawn from 𝐷𝑛

• 𝐴 is a learning algorithm, 𝑙 is the loss function

• 𝐴𝑠 is a model trained on 𝑆

• 𝒜 is an adversary

1Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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THREAT MODELING

• Threat model
− Suppose

• 𝑥, 𝑦  ~ 𝐷; 𝑥 is a set of features, 𝑦 is a response

• 𝑆 is a training set drawn from 𝐷𝑛

• 𝐴 is a learning algorithm, 𝑙 is the loss function

• 𝐴𝑠 is a model trained on 𝑆

• 𝒜 is an adversary

− Membership experiment1

• Sample 𝑆 ~ 𝐷𝑛, and let 𝐴𝑠 = 𝐴 𝑆

• Choose 𝑏 ← {0, 1} uniformly at random

• Draw 𝑧 ~ 𝑆 if 𝑏 = 0, or 𝑧 ~ 𝐷 if 𝑏 = 1

• Exp𝑀(𝒜, 𝐴, 𝑛, 𝐷) is 1 if 𝒜 𝑧, 𝐴𝑠, 𝑛, 𝐷 = 𝑏 and 0 otherwise. 𝒜 must output 0 or 1

1Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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THREAT MODELING

• Threat model
− Membership experiment1

• Sample 𝑆 ~ 𝐷𝑛, and let 𝐴𝑠 = 𝐴 𝑆

• Choose 𝑏 ← {0, 1} uniformly at random

• Draw 𝑧 ~ 𝑆 if 𝑏 = 0, or 𝑧 ~ 𝐷 if 𝑏 = 1

• Exp𝑀(𝒜, 𝐴, 𝑛, 𝐷) is 1 if 𝒜 𝑧, 𝐴𝑠, 𝑛, 𝐷 = 𝑏 and 0 otherwise. 𝒜 must output 0 or 1

− Membership advantage1

• Adv𝑀 𝒜, 𝐴, 𝑛, 𝐷 = Pr 𝒜 = 0|𝑏 = 0 − Pr 𝒜 = 0|𝑏 = 1  
                                = 2 Pr Exp𝑀 𝒜, 𝐴, 𝑛, 𝐷 = 1 − 1                                

1Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

• Yeom et al. attack
− 𝒜1: Bounded loss function

• Suppose the loss function is bounded on 𝐵

• For 𝑧 = 𝑥, 𝑦

− The attacker returns 1 with the probability 𝑙(𝐴𝑠, 𝑧)/𝐵 

− Otherwise, the attacker outputs 0

1Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

• Yeom et al. attack
− 𝒜1: Bounded loss function

• Suppose the loss function is bounded on 𝐵

• For 𝑧 = 𝑥, 𝑦

− The attacker returns 1 with the probability 𝑙(𝐴𝑠, 𝑧)/𝐵 

− Otherwise, the attacker outputs 0

• (Theorem 2) 𝒜1’s advantage is 𝑅gen(𝐴)/𝐵

1Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

• Yeom et al. attack
− 𝒜1: Bounded loss function

• Suppose the loss function is bounded on 𝐵

• For 𝑧 = 𝑥, 𝑦

− The attacker returns 1 with the probability 𝑙(𝐴𝑠, 𝑧)/𝐵 

− Otherwise, the attacker outputs 0

− 𝒜2: Threshold
• Suppose the attacker knows 

− The conditional probability density functions of the error

− 𝑓 𝜖 𝑏 = 0) and 𝑓 𝜖 𝑏 = 1) 

− such as the avg. loss over the training data (and over the test data)

• For 𝑧 = 𝑥, 𝑦

− Let 𝜖 = 𝑦 − 𝐴𝑠(𝑥)

− The attacker outputs argmax𝑏∈ 0,1 𝑓 𝜖 𝑏)
1Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

• Evaluation

1Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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REVISITING YEOM ET AL. ATTACK

• Yeom et al. attack
− 𝒜1: Bounded loss function

• Suppose the loss function is bounded on 𝐵

• For 𝑧 = 𝑥, 𝑦

− The attacker returns 1 with the probability 𝑙(𝐴𝑠, 𝑧)/𝐵 

− Otherwise, the attacker outputs 0

− 𝒜2: Threshold
• Suppose the attacker knows 

− The conditional probability density functions of the error

− 𝑓 𝜖 𝑏 = 0) and 𝑓 𝜖 𝑏 = 1) 

− such as the avg. loss over the training data (and over the test data)

• For 𝑧 = 𝑥, 𝑦

− Let 𝜖 = 𝑦 − 𝐴𝑠(𝑥)

− The attacker outputs argmax𝑏∈ 0,1 𝑓 𝜖 𝑏)
1Yeom et al., Privacy Risks in Machine Learning: Analyzing the Connection to Overfitting
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REVISITING YEOM ET AL. ATTACK

• Yeom et al. attack
− 𝒜2: Threshold

• Suppose the attacker knows 

− The conditional probability density functions of the error

− 𝑓 𝜖 𝑏 = 0) and 𝑓 𝜖 𝑏 = 1)

− such as the avg. loss over the training data (and over the test data)

• For 𝑧 = 𝑥, 𝑦

− Let 𝜖 = 𝑦 − 𝐴𝑠(𝑥)

− The attacker outputs argmax𝑏∈ 0,1 𝑓 𝜖 𝑏) 

• Challenge:
− How to compute an optimal threshold?

1Song et al., Privacy Risks of Securing Machine Learning Models against Adversarial Examples
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MEMBERSHIP INFERENCE ATTACKS 

• Shokri et al. attack
− Key idea: shadow models

• The attacker has some data samples from 𝐷

• If the attacker trains models with those samples, we know their memberships!

• If shadow models are trained similarity, we can exploit the membership info.!

− Attacker’s data:

• Know the labeled records: 𝑥, 𝑦

• Query them to the target model
and collect its predictions: 𝑥, 𝑦 , ො𝑦

− How to train?

• Create a train and test split

• Use the train data to train the shadow models
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MEMBERSHIP INFERENCE ATTACKS

• Shokri et al. attack
− Attack model

• Data format 𝑥, 𝑦 , ො𝑦

• Some of them are “IN” the shadow train, otherwise “OUT”

• Combine three info. 𝑦, ො𝑦, 𝐈𝐍  or 𝑦, ො𝑦, 𝐎𝐔𝐓

• Make the attack model predict IN or OUT
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EVALUATION

• Setup
− Datasets:

• MNIST | CIFAR-10/100

• Purchases | Locations | Texas-100 | UCI Adult

− Models

• MLaaS: Google Prediction API | Amazon ML | NNs
 

− MI Attack

• Shadow models: 20 – 100 models
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• MI Attacks on CIFAR
− Shadow models: 100

− Training set (for targets):

• CIFAR-10: {2.5, 5, 10, 15}k samples

• CIFAR-100: {4.5, 10, 20, 30}k samples

− In-short: MI attacks work with a pretty reasonable acc.

EVALUATION
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• MI Attacks w. Different # classes
− Dataset: Purchase

− Modification:

• # Classes: 10 – 100 classes (keep N(𝐷𝑡𝑟) the same)

• Google Prediction API

− In-short: More supporting data samples in the class reduces MI attacks’ success

EVALUATION
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• MI Attacks w. Different Models
− Dataset: Purchase-100

− Models (trained on 10k records):

• Amazon ML

• Google’s Prediction API

− In-short: across all models, MI attacks work with a pretty reasonable acc.

EVALUATION
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• MI Attacks, Why Do They Work?
− Dataset: Purchase

− Modification:

• # Classes: 10 – 100 classes (keep N(𝐷𝑡𝑟) the same)

• Google Prediction API

− In-short: It may depend on a model’s ability to distinguish members and non-members

EVALUATION

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 20



REVISITING YEOM ET AL. AND SHOKRI ET AL. ATTACK

• Metrics for measuring the attack success
− Problem of existing metrics

• Symmetric: equal cost to false-positives and false-negatives

• Average-case metric: often in security, we are interested in a certain subset

− LOSS attack
• Metrics: 

− Membership advantage

− Precision

− AUROC

• Problem: perform at random at low-FPR
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REVISITING YEOM ET AL. AND SHOKRI ET AL. ATTACK

• Metrics for measuring the attack success
− Problem of existing metrics

• Symmetric: equal cost to false-positives and false-negatives

• Average-case metric: often in security, we are interested in a certain subset

− LOSS attack
• Metrics: membership advantage or precision

• Problem: perform at random at low-FPR
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MEMBERSHIP INFERENCE ATTACK

• LiRA (The likelihood ratio attack)
− Per-sample hardness score

• Not all examples are equal

• Some samples are easier to fit

• Some samples have a larger separability

• It does not matter if it is an inlier or outlier
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MEMBERSHIP INFERENCE ATTACK

• LiRA (The likelihood ratio attack)
− Per-sample hardness score

• Not all examples are equal

• Some samples are easier to fit

• Some samples have a larger separability

• It does not matter if it is an inlier or outlier

− Proposed attack
• Compute per-sample hardness scores

• Use parametric modeling
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EVALUATION

• Setup
− Datasets: CIFAR-10, CIFAR-100, ImageNet and WikiText

− Models

• Wide-ResNet (CIFAR-10 and -100)

• ResNet-50 (ImageNet)

• GPT-2 small (WikiText) 

− LiRA setup

• Shadow models: 65 for ImageNet and 256 for others

• Repeat the attack 10 times

− Metric

• TPR at 1% FPR

• ROC curve
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EVALUATION

• LiRA (online) attack vs others
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EVALUATION

• LiRA (online) attack vs others
− 10x more successful than the prior attacks at the low-FPR region (0.001 - 0.1 FPR)
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EVALUATION

• LiRA (online) attack and the generalization gap
− Overfitted models tend to vulnerable to the attack

− There are models with the identical gaps 100x times vulnerable

− More accurate models are more vulnerable to the attack
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DEFEATING MEMBERSHIP INFERENCE
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DEFINITION OF MEMORIZATION

• Feldman and Zhang’s
− New way to quantify the label memorization

• How much influence a single example on the test-set

• Memorization is high, when the influence (acc. difference) is high
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DEFINITION OF AN ALGORITHM BEING PRIVATE

• A private model (an algorithm)
− Feldman and Zhang’s label memorization

• How much influence a single example on the test-set

• Memorization is high, when the influence (acc. difference) is high

− Property of a private model

• Given any training instance, its influence on the test acc. is low
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DIFFERENTIAL PRIVACY

• 𝜖-Differential Privacy
− A randomized algorithm 𝑀: 𝐷 → 𝑅 with domain 𝐷 and a range 𝑅 satisfies 𝜖-differential 

privacy if for any two adjacent inputs 𝑑, 𝑑′ ∈ 𝐷 and any subset of outputs 𝑆 ⊂ 𝑅 it holds
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DIFFERENTIAL PRIVACY

Link Link

• 𝜖-Differential Privacy
− A randomized algorithm 𝑀: 𝐷 → 𝑅 with domain 𝐷 and a range 𝑅 satisfies 𝜖-differential 

privacy if for any two adjacent inputs 𝑑, 𝑑′ ∈ 𝐷 and any subset of outputs 𝑆 ⊂ 𝑅 it holds

• (𝜖, 𝛿)-Differential Privacy

− 𝛿: Represent some catastrophic failure cases [Link, Link]

− 𝛿 < 1/|d|, where |d| is the number of samples in a database
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DIFFERENTIAL PRIVACY

• (𝜖, 𝛿)-Differential Privacy [Conceptually]

− You have two databases 𝑑, 𝑑′ differ by one item

− You make the same query 𝑀 to each and have results 𝑀(𝑑) and 𝑀(𝑑′)

− You ensure the distinguishability between the two under a measure 𝜖

• 𝜖 is large: those two are distinguishable, less private

• 𝜖 is small: the two outputs are similar, more private

− You also ensure the catastrophic failure probability under 𝛿
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DIFFERENTIAL PRIVACY

• (𝜖, 𝛿)-Differential Privacy

• Mechanism for (𝜖, 𝛿)-DP: Gaussian noise

− 𝑀(𝑑): (𝜖, 𝛿)-DP query output on 𝑑

− 𝑓(𝑑): non (𝜖, 𝛿)-DP (original) query output on 𝑑

− 𝑁(0, 𝑆𝑓
2 ∙ 𝜎2): Gaussian normal distribution with mean 0 and the std. of 𝑆𝑓

2 ∙ 𝜎2

Post-hoc: Set the Goal 𝜖 and Calibrate the noise 𝑆𝑓
2 ∙ 𝜎2!
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DIFFERENTIAL PRIVACY FOR MACHINE LEARNING

• Revisiting mini-batch stochastic gradient descent (SGD)
1. At each step 𝑡, it takes a mini-batch 𝐿𝑡

2. Computes the loss ℒ(𝜃) over the samples in 𝐿𝑡, w.r.t. the label 𝑦

3. Computes the gradients 𝑔𝑡 of ℒ(𝜃)

4. Update the model parameters 𝜃 towards the direction of reducing the loss

𝐷: a training set 𝜃: a model

1. Take 𝐿𝑡, and compute ℒ(𝜃)

2. Compute 𝑔𝑡 of ℒ(𝜃)

3. Update the 𝜃

This Process Should Be (𝜖, 𝛿)-DP!
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MAKE EACH MINI-BATCH SGD STEP (𝜖, 𝛿)-DP

• Mini-batch stochastic gradient descent (SGD)
1. At each step 𝑡, it takes a mini-batch 𝐿𝑡

2. Computes the loss ℒ(𝜃) over the samples in 𝐿𝑡, w.r.t. the label 𝑦

3. Computes the gradients 𝑔𝑡 of ℒ(𝜃)

4. Clip (scale) the gradients to 1/𝐶, where 𝐶 > 1

5. Add Gaussian random noise 𝑁(0, 𝜎2𝐶2𝐈) to 𝑔𝑡

6. Update the model parameters 𝜃 towards the direction of reducing the loss

𝐷: a training set 𝜃: a model

1. Take 𝐿𝑡, and compute ℒ(𝜃)

2. Compute 𝑔𝑡 of ℒ(𝜃)

3. Clip 𝑔𝑡 and add noise
4. Update the 𝜃

Secure AI Systems Lab (SAIL) :: CS578 - Cyber-security 37



MAKE THE ENTIRE TRAINING PROCESS (𝜖, 𝛿)-DP

• Mini-batch stochastic gradient descent (SGD)
− SGD iteratively computes the (𝜖, 𝛿)-DP step 𝑇 times

− Problem: how do we compute the total privacy leakage 𝜖𝑡𝑜𝑡 over 𝑇 iterations?

• Privacy accounting with moment accountant
− Key intuition: DP has the composition property

• Suppose the two mechanism M1 and M2 satisfies (𝜀1, 𝛿1)- and (𝜀2, 𝛿2)-DP
the composition of those mechanisms M3 = M2(M1) satisfies (𝜀1+𝜀2, 𝛿1+𝛿2)-DP

• If each step 𝑡 satisfies (𝜀, 𝛿)-DP, the total SGD process satisfies (𝜀𝑇, 𝛿𝑇)-DP

− Moment accountant: tracking the total privacy leakage 𝜀𝑇 over 𝑇 iterations
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PUTTING ALL TOGETHER

• DP-Stochastic Gradient Descent (DP-SGD)

𝜺, 𝛿 ← compute the privacy cost (leakage) so far
If 𝜺 > 𝜺𝒃𝒖𝒈𝒆𝒕: then break;

// we train a model 𝜃 with the privacy budget 𝜀𝑏𝑢𝑑𝑔𝑒𝑡

// iterate over T mini-batches

// compute the gradient

// clip the magnitude of the gradients

// add Gaussian random noise to the gradients

// compute the privacy cost (leakage) up to t iterations
// if the cost is over the budget, then stop training
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EVALUATION

• Setup
− Datasets: MNIST | CIFAR-10/100

− Models:

• MNIST: 2-layer feedforward NN on 60-dim. PCA projected inputs

• CIFAR-10/100: A CNN with 2 conv. layers and 2 fully-connected layers
 

− Metrics:

• Classification accuracy

• Privacy cost (𝜀𝑏𝑢𝑑𝑔𝑒𝑡)
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• Impact of Noise
− Dataset, Models: MNIST, 2-layer feedforward NN

− Setup: 60-dim PCA projected inputs | Clipping threshold (𝐂): 4 | Noise (𝜎): 8, 4, 2 (from the left)

− Summary:

• On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)

• The accuracy of private models decreases as we decrease the privacy cost

EVALUATION
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• Impact of Noise
− Dataset, Models: MNIST, 2-layer feedforward NN

− Setup: 60-dim PCA projected inputs | Clipping threshold (𝐂): 4 | Noise (𝜎): 8, 4, 2 (from the left)

− Summary:

• On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)

• The accuracy of private models decreases as we decrease the privacy cost

EVALUATION
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• Impact of Noise
− Dataset, Models: CIFAR-10, CNN

− Setup: Clipping threshold (𝐂): 3 | Noise (𝜎): 6

− Summary:

• On CIFAR-10, DP-SGD offers reasonable acc. under various privacy costs (clean: 80%)

• The accuracy of private models decreases as we decrease the privacy cost

EVALUATION
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DEFEATING ADVERSARIAL EXAMPLES
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ADVERSARIAL EXAMPLES ARE THE WORST-CASE NOISE

Prediction: Panda

+ 0.007 × =

Human-imperceptible Noise Prediction: Gibbon

Goodfellow et al., Explaining and Harnessing Adversarial Examples, International Conference on Learning Representations (ICLR) , 2015.

• A test-time input to a neural network
− Crafted with the objective of fooling the network’s decision(s)

− That looks like a natural test-time input
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DENOISING DIFFUSION MODELS

• Denoising diffusion probabilistic models (DDPMs)
− Generative models trained to gradually denoise the data

− The diffusion process transforms an image 𝑥 to the purely random noise

− Given an image 𝑥, the model samples a noisy image:
𝛼 is a constant derived from 𝑡 and determines the amount of noise to be added 
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DENOISING DIFFUSION MODELS

• Denoising diffusion probabilistic models (DDPMs)
− Generative models trained to gradually denoise the data

− The diffusion process transforms an image 𝑥 to the purely random noise

− The reverse process synthesizes 𝑥 from random Gaussian noise
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WE HAVE PRE-TRAINED DENOISERS

• Denoising diffusion probabilistic models (DDPMs)
− Generative models trained to gradually denoise the data

− The diffusion process transforms an image 𝑥 to the purely random noise

− The reverse process synthesizes 𝑥 from random Gaussian noise

• Use DDPMs as a denoiser 𝐷𝜃: 𝑅𝑑 → 𝑅𝑑

− One-shot denoising: apply the diffusion model once for a fixed noise level

− Multi-step denoising: apply the diffusion process multiple times
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PROVABLE GUARANTEE AGAINST INPUT PERTURBATIONS

• Practical algorithms for prediction and certification

Guarantee the probability of 𝑃𝑅𝐸𝐷𝐼𝐶𝑇 

returning a class other than 𝑔(𝑥) is 𝛼
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EVALUATION

• Setup
− Data: CIFAR-10 and ImageNet-21k

− Model: Wide-ResNet-28-10 (white-box)

− Denoisers: DDPMs

• Measure
− Certified test-set accuracy under a radius 𝑅 with a confidence of 𝛼 

− Under various smoothing factor 𝜀 (std. of Gaussian noise used)
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EVALUATION

• Certified accuracy vs. prior work (ImageNet-21k)

− DDPM denoisers offer the highest certified accuracy compared to the prior work

− To achieve the highest accuracy, one can use this off-the-shelf model w/o training
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EVALUATION

• One-shot vs. multi-step denoising (ImageNet-21k)

− One-shot denoising offers more faithful results

− Multi-step denoising destroys the information about the original image
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CAN WE USE DENOISING MODELS TO DEFEAT CLEAN-LABEL POISONING?
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PROVABLE GUARANTEE AGAINST DATA POISONING

• Practical algorithms for prediction and certification

Guarantee the probability of 𝑃𝑅𝐸𝐷𝐼𝐶𝑇 

returning a class other than 𝑓(𝑥) is 𝛼
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PROVABLE GUARANTEE AGAINST DATA POISONING

• Performance comparison to Gaussian “noising”
− Our approach achieves a guarantee comparable to existing ones

− The time it takes to achieve that guarantee is 20x less
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EVALUATION

• Defeating clean-label poisoning attacks
− The results are from the transfer-learning scenarios (one-shot kill attacks)

− Our approach completely renders these attacks ineffective
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EVALUATION

• Defeating clean-label poisoning attacks
− The results are from training from scratch scenarios

− Our approach completely renders these attacks ineffective
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Thank You!

Secure AI Systems Lab

Sanghyun Hong
https://secure-ai.systems/courses/Sec-Grad/current
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