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PRIVACY IN MACHINE LEARNING

* Membership inference attacks
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THREAT MODELING

* Threat model
- An adversary A wants to know
— if a sample (x, y)~ D is the member of
- the training set S of an ML model f or not

fmm e _predict(data) (
' (data record, class label) » Target Model
_________ e L

label

prediction
Attack Model

data € training set ?
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THREAT MODELING

* Threat model
- Suppose

* (x,y) ~ D; x is a set of features, y is a response
* Sisatraining set drawn from D™

* Aisalearning algorithm, [ is the loss function

e Agisamodel trained on S

A is an adversary

Oregon State Yeom et al., Privacy Risks in Machine Leaming: Analyzing the Connection to Overfitting
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THREAT MODELING

* Threat model
- Suppose

* (x,y) ~ D; x is a set of features, y is a response
* Sisatraining set drawn from D™

* Aisalearning algorithm, [ is the loss function

e Agisamodel trained on S

* A isan adversary

- Membership experiment!
« Sample S ~ D", and let A; = A(S)
* Choose b « {0, 1} uniformly at random
e Drawz~Sifb=0,orz~Difb =1
« ExpM(A,A,n,D)is1if A(z,A;,n,D) = b and 0 otherwise. A must output 0 or 1
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THREAT MODELING

* Threat model

- Membership experiment?!
* Sample S ~ D™, and let A, = A(S)
* Choose b « {0, 1} uniformly at random
e Drawz~Sifb=0,orz~Difb =1
« ExpM(A,A,n,D)is1if A(z,A;,n,D) = b and 0 otherwise. A must output 0 or 1

- Membership advantage!

« AdvM(A,A,n,D) = Pr[A = 0|b = 0] — Pr[A = 0|b = 1]
= 2 Pr[ExpM(A,A,n,D) = 1] — 1
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MEMBERSHIP INFERENCE ATTACKS

* Yeom et al. attack

- A4: Bounded loss function
e Suppose the loss function is bounded on B
* Forz = (x,y)
- The attacker returns 1 with the probability [(Ag, z) /B
- Otherwise, the attacker outputs O

Oregon State Yeom et al., Privacy Risks in Machine Leaming: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

* Yeom et al. attack
- A4: Bounded loss function
e Suppose the loss function is bounded on B

* Forz =(x,y)
- The attacker returns 1 with the probability [(Ag, z) /B

- Otherwise, the attacker outputs O
A4’s advantage is /B
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MEMBERSHIP INFERENCE ATTACKS

* Yeom et al. attack

- A4: Bounded loss function
e Suppose the loss function is bounded on B
* Forz = (x,y)
- The attacker returns 1 with the probability [(Ag, z) /B
- Otherwise, the attacker outputs O

- A,: Threshold

e Suppose the attacker knows

- The conditional probability density functions of the error

- f(elb=0)and f(e| b =1)

- such as the avg. loss over the training data (and over the test data)
* Forz = (x,y)

- lete =y — A (x)

— The attacker outputs argmaxpego 13/ (€ | b)

Oregon State Yeom et al., Privacy Risks in Machine Leaming: Analyzing the Connection to Overfitting
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MEMBERSHIP INFERENCE ATTACKS

e Evaluation

Our work Shokri et al. [7]
Attack .
. Makes only one query to the model Must train hundreds of shadow models
complexity
Required Ability to train shadow models, e.g., input

Average training loss Lg

knowledge distribution and type of model
0.505 (MNIST) 0.517 (MNIST)
Precision | 0.694 (CIFAR-10) 0.72-0.74 (CIFAR-10)
0.874 (CIFAR-100) > 0.99 (CIFAR-100)
Recall | > 0.99 > 0.99

Table 1: Comparison of our membership inference attack with that presented by Shokri et al. While our
attack has slightly lower precision, it requires far less computational resources and background knowledge.

Oregon State Yeom et al., Privacy Risks in Machine Leaming: Analyzing the Connection to Overfitting
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REVISITING YEOM ET AL. ATTACK

* Yeom et al. attack

- A4: Bounded loss function
e Suppose the loss function is bounded on B
* Forz = (x,y)
- The attacker returns 1 with the probability [(Ag, z) /B
- Otherwise, the attacker outputs O

- A,: Threshold

e Suppose the attacker knows

- f(elb=0)and f(e| b =1)

- such as the avg. loss over the training data (and over the test data)
* Forz = (x,y)

- lete =y — A (x)

— The attacker outputs argmaxpego 13/ (€ | b)
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REVISITING YEOM ET AL. ATTACK

* Yeom et al. attack
- A,: Threshold

* Suppose the attacker knows
— The conditional probability density functions of the error
- felb=0)and f(e|b=1)
- such as the avg. loss over the training data (and over the test data)

* Forz = (X, y) 0.08 mm Member
- Lete = y - AS(.X) 0.07 Non-Member
- The attacker outputs argmaxpeqo 13/ (€ | b) 0.06
§0.05
3]
* Challenge: £0.04
. 0.03
- How to compute an optimal threshold? 0.02
0.01
0.00 1075 10~* 1072 10° 102
Cross-Entropy Loss
OregonState 1Song et al., Privacy Risks of Securing Machine Learning Models against Adversarial Examples
&7 University 13
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MEMBERSHIP INFERENCE ATTACKS

* Shokri et al. attack
- Key idea:
* The attacker has some data samples from D
* |f the attacker trains models with those samples, we know their memberships!
 If shadow models are trained similarity, we can exploit the membership info.!

— Attacker’s data: —
* Know the labeled records: (x,y) ° : §

* Query them to the target model
and collect its predictions: ((x, y),f/)

: train()
Shadow Training Set 1 Shadow Model 1
- HOW to traln? | train()
. . Shadow Training Set 2 = Shadow Model 2
* Create a train and test split
* Use the train data to train the shadow models Cpram)
Shadow Training Set k Shadow Model k&
ML API

Oregon State
University
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MEMBERSHIP INFERENCE ATTACKS

* Shokri et al. attack
- Attack model
Data format ((x, y),f/)
Some of them are “IN” the shadow train, otherwise “OUT”
Combine three info. (y, ¥, IN) or (y, 7y, OUT)
Make the attack model predict IN or OUT

5 (data record, class label) | predict(data) | (prediction, class label, “in” / “out”) E

Shadow Model 1

e ——
Shadow Training Set 1

e —
Shadow Test Set 1

“in” Prediction Set 1

“out” Prediction Set 1

Shadow Model &

——
Shadow Training Set k “in” Prediction Set k train()
S — e ——

Shadow Test Set k “out” Prediction Set k

Attack Training Set Attack Model

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security 15
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EVALUATION

* Setup

- Datasets:
* MNIST | CIFAR-10/100
* Purchases | Locations | Texas-100 | UCI Adult

- Models
* MLaaS: Google Prediction APl | Amazon ML | NNs

- MI Attack
 Shadow models: 20 — 100 models

AR
Oregon State
University
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EVALUATION

e Ml Attacks on CIFAR
- Shadow models: 100
- Training set (for targets):

* CIFAR-10:{2.5, 5, 10, 15}k samples

* CIFAR-100:{4.5, 10, 20, 30}k samples
- In-short: Ml attacks work with a pretty reasonable acc.

CIFAR-10, CNN, Membership Inference Attack
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EVALUATION

* MI Attacks w. Different # classes Dataset Jraining - Testing - Atack
ccuracy  Accuracy  Precision
T MNIST 0.984 0.928 0.517
- Modification: Location 1.000 0.673 0.678
. . _ Purchase (2) 0.999 0.984 0.505
# Classes: 10 — 100 classes (keep N(D;,) the same Purchase (10) 0.999 0.866 0.550
o Google Prediction API Purchase (20) 1.000 0.781 0.590
. . Purchase (50) 1.000 0.693 0.860
— In-short: More supporting data samples in the c|  purchase (100) 0.999 0.659 0.935
TX hospital stays 0.668 0.517 0.657
Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack Purchase Dataset, 10-100 Classes, Google, Membership Inference Attack
10 Classes : : o o7 10 Classes
B 20 Classes o || ! REo T L AN LN S osf 50 Closses o
5 100 Classes _© . @Oﬁoggg ;E%oo & 3 : i 100 Classes @
0.9 [Py 09 | £ R g 05 :
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EVALUATION

 MI Attacks w. Different Models
- Dataset: Purchase-100

— Models (trained on 10k records):

* Amazon ML
* Google’s Prediction API

ML Platform

Training

Test

Google

Amazon (10,1e-6)
Amazon (100,1e-4)
Neural network

0.999
0.941

1.00
0.830

0.656
0.468
0.504
0.670

- In-short: across all models, Ml attacks work with a pretty reasonable acc.

Purchase Dataset, Amazon (10,1e-6), Membership Inference Attack
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Purchase Dataset, Amazon (100,1e-4), Membership Inference Attack
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EVALUATION

* MI Attacks, Why Do They Work?
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REVISITING YEOM ET AL. AND SHOKRI ET AL. ATTACK

* Metrics for measuring the attack success
- Problem of existing metrics

* Symmetric: equal cost to false-positives and false-negatives
* Average-case metric: often in security, we are interested in a certain subset

— LOSS attack
* Metrics:

=
=]

- Membership advantage | 2
- Precision
- AUROC

* Problem: perform at random at low-FPR
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T T T 10-5 T T
025 050 075 1.00 105 103 107!

False Positive Rate False Positive Rate

(a) linear scale (b) log scale

Fig. 2: ROC curve for the LOSS baseline membership infer-
ence attack, shown with both linear scaling (left), also and
log-log scaling (right) to emphasize the low-FPR regime.
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REVISITING YEOM ET AL. AND SHOKRI ET AL. ATTACK

* Metrics for measuring the attack success
- Problem of existing metrics

* Symmetric: equal cost to false-positives and false-negatives
* Average-case metric: often in security, we are interested in a certain subset

— LOSS attack

* Metrics: membership advantage or precision
* Problem: perform at random at low-FPR ]
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(a) linear scale (b) log scale

Fig. 2: ROC curve for the LOSS baseline membership infer-
ence attack, shown with both linear scaling (left), also and
log-log scaling (right) to emphasize the low-FPR regime.
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MEMBERSHIP INFERENCE ATTACK

* LiRA (The likelihood ratio attack)

- Per-sample hardness score
* Not all examples are equal
e Some samples are easier to fit
* Some samples have a larger separability
* It does not matter if it is an inlier or outlier

Oregon State
University
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Fig. 3: Some examples are easier to fit than others, and some
have a larger separability between their losses when being
a member of the training set or not. We train 1024 models
on random subsets of CIFAR-10 and plot the losses for four
examples when the example is a member of the training set
(Qin(z,), in red) or not (Qou(z, y), in blue).
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MEMBERSHIP INFERENCE ATTACK

* LiRA (The likelihood ratio attack)

- Per-sample hardness score
* Not all examples are equal
e Some samples are easier to fit
* Some samples have a larger separability
* It does not matter if it is an inlier or outlier

- Proposed attack
* Compute per-sample hardness scores
* Use parametric modeling

200 4 confidence || | CE loss | logit scaling
fz)y —log(f(x)y) ¢(f(x)y)
04 . | .l F . ‘ ‘\

T T I‘ T
0.0 05 1.0 10771073 10' —20 0 20

Fig. 4: The model’s confidence, or its logarithm (the cross-
entropy loss) are not normally distributed. Applying the logit
function yields values that are approximately normal.
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Algorithm 1 Our online Likelihood Ratio Attack (LiRA).
We train shadow models on datasets with and without the
target example, estimate mean and variance of the loss dis-
tributions, and compute a likelihood ratio test. (In our offline
variant, we omit lines 5, 6, 10, and 12, and instead return
the prediction by estimating a single-tailed distribution, as is
shown in Equation (4).)

Require: model f, example (z,y), data distribution I
1: confsiyy, = {}

2: confsy, = {}

3: for N times do

4: Dattack %D > Sample a shadow dataset
50 Jfin & T (Dagack U {(2,9)}) > train IN model
6:  confsi, < confsyy, U {¢(fin(z)y)}

T fout T(Dauack\{(l', y)}) > frain QUT model
8 confsyy «— confsey U {&(fou(x)y)}

9: end for

10: iy < mean(confs;,)

11: fioy +— mean(confsyy)

12: o2 « var(confs,)

13: 02, + var(confsyy)

14: confors = $(f(2)y) > query target model
15: return A = p(confons | N (pin, 073))

p(confobs ‘ N(P"out:ogut))

24



EVALUATION

* Setup
Datasets: CIFAR-10, CIFAR-100, ImageNet and WikiText
Models

* Wide-ResNet (CIFAR-10 and -100)

* ResNet-50 (ImageNet)

e GPT-2 small (WikiText)

LiRA setup
* Shadow models: 65 for ImageNet and 256 for others
e Repeat the attack 10 times

- Metric
* TPR at 1% FPR
* ROC curve

Secure Al Systems Lab (SAIL) :: CS578 - Cyber-security
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EVALUATION

* LiRA (online) attack vs others

Q 2 23
% § 8f ,f TE TPR@0001%FPR TPR @ 0.1% FPR Balanced Accuracy

SE g
Method £ E5 <$2 52 C10 C100 WTI03 C10 C-100 WTI03 C-10 C-100 WTI03
Yeom et al. [70] O O O O 00% 00% 000% 00% 00% 01% 594% 78.0%  50.0%
Shokri et al. [60] e O e O 00% 00% - 03%  1.6% ~ 59.6% 74.5% -
Jayaramanetal. [25] O @ O O 00% 0.0% - 00%  0.0% ~ 594%  76.9% -
Song and Mittal [61] @ O @ O 00% 00% - 01%  14% ~ 595%  77.3% -
Sablayrollesetal. [56) @ O @ @ 01% 08% 001% 17% 74%  10% 563% 69.1% 65.7%
Long et al. [37] e O e e 00% 00% - 22%  47% ~  535% 54.5% -
Watson et al. [68] e O e e 01% 09% 002% 13% 54% 11% 59.1% 70.1% 654%
Ye et al. [69] e O e o - - - - - - 603% 769%  65.5%
Ours e o o o 22% 112% 009% 84% 276% 14% 638% 826%  65.6%

TABLE I: Comparison of prior membership inference attacks under the same settings for well-generalizing models on
CIFAR-10, CIFAR-100, and WikiText-103 using 256 shadow models. Accuracy is only presented for completeness; we do not
believe this is a meaningful metric for evaluating membership inference attacks. Full ROC curves are presented in Appendix A.
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EVALUATION

* LiRA (online) attack vs others
- 10x more successful than the prior attacks at the low-FPR region (0.001 - 0.1 FPR)
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Song et al. (acc=59.5%)
- Yeom et al. (acc=59.5%)
Jayaraman et al. (acc=59.0%)
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EVALUATION

* LiRA (online) attack and the generalization gap
- Overfitted models tend to vulnerable to the attack
- There are models with the identical gaps 100x times vulnerable
- More accurate models are more vulnerable to the attack

10° 5
-1
™ y
5 1072 4
3 ] .‘ ® CNN1, CNN2, CNN4
x ] ‘. .. © mm cnns, NG
~ ] o BN CNN32, CNN64
1077 5 WRN28-1
] BN \WRN28-2
1 Il WRN28-10
1074 T : T .
0.0 0.1 0.2 0.3 0.4 0.5

Train Test Gap

Fig. 7: Attack true-positive rate versus model train-test gap for
a variety of CIFAR-10 models.
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DEFEATING MEMBERSHIP INFERENCE
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DEFINITION OF MEMORIZATION

* Feldman and Zhang’s

Oregon State
University

to quantify the label memorization

infl(A, 54,5) = | Pr [h(z;) =yj] - hki’{g\i)[h(%) = y;]-

* How much influence a single example on the test-set
* Memorization is high, when the influence (acc. difference) is high

0.72 0.750 0.9925
oy > —0——0—o o %o 2
© 0.70 8 0.725 z 0.9920
S 5 e
2 S 0.700 2 0.9915
© 0.68 remove memorized o ®

—e— remove random 0.675 0.9910
= =
o 0.9905
2 1.00 2 1.00 1.00
g g g5
- 0.75 = 0.75 E=S+]
g ] z =E |
< 0,50 £ 050 ‘ " oos
g 0.2 0.4 0.6 0.8 1.0 g ' 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
memorization value threshold memorization value threshold memorization value threshold
(a) ImageNet (b) CIFAR-100 (c) MNIST

Figure 2: Effect on the test set accuracy of removing examples with memorization value estimate above a given
threshold and the same number of randomly chosen examples. Fraction of the training set remaining after the removal
is in the bottom plots. Shaded area in the accuracy represents one standard deviation on 100 (CIFAR-100, MNIST) and
5 (ImageNet) trials.
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DEFINITION OF AN ALGORITHM

* A private model (an algorithm)
- Feldman and Zhang’s label memorization

infl(A, 54,5) = | Pr [h(z;) =yj] - hki’{g\i)[h(%) = y;]-

* How much influence a single example on the test-set
* Memorization is high, when the influence (acc. difference) is high

- Property of a private model
* Given any training instance, its influence on the test acc. is low

AR
Oregon State
University
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DIFFERENTIAL PRIVACY

» ¢-Differential Privacy

- Arandomized algorithm M: D — R with domain D and a range R satisfies e-differential
privacy if for any two adjacent inputs d,d’ € D and any subset of outputs S R it holds

Pr[M(d) € S] < e° Pr[M(d’) € S]

AR
Oregon State
University
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DIFFERENTIAL PRIVACY

» ¢-Differential Privacy

- Arandomized algorithm M: D — R with domain D and a range R satisfies e-differential
privacy if for any two adjacent inputs d,d’ € D and any subset of outputs S R it holds

Pr[M(d) € S] < e° Pr[M(d’) € S]

* (€, 8)-Differential Privacy
Pr[M(d) € S] < e* Pr[M(d’) € S] + 6

- 0: Represent some catastrophic failure cases [Link, Link]
- 6 <1/|d]|, where |d| is the number of samples in a database
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DIFFERENTIAL PRIVACY

* (€, 8)-Differential Privacy
Pr[M(d) € S] < e Pr[M(d’) € S] + 6

- You have two databases d, d’ differ by one item
- You make the same query M to each and have results M(d) and M(d")
- You ensure the distinguishability between the two under a measure €
* €islarge: those two are distinguishable, less private
* €is small: the two outputs are similar, more private
- You also ensure the catastrophic failure probability under
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DIFFERENTIAL PRIVACY

* (€, 8)-Differential Privacy
Pr[M(d) € S] < e Pr[M(d’) € S] + 6

* Mechanism for (€, §)-DP: Gaussian noise
M(d) £ f(d) +N(0,S7 - o)

- M(d): (¢,6)-DP query output on d
- f(d): non (€,6)-DP (original) query output on d
- N(0,Sf - 02): Gaussian normal distribution with mean 0 and the std. of S¢ - 0’2

Set the Goal € and Calibrate the noise S]? g2l

Oregon State
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DIFFERENTIAL PRIVACY FOR MACHINE LEARNING

* Revisiting mini-batch stochastic gradient descent (SGD)
1. Ateach step t, it takes a mini-batch L;
2. Computes the loss L(8) over the samplesin L;, w.r.t. the label y
3. Computes the gradients g, of L(8)
4. Update the model parameters 8 towards the direction of reducing the loss

This Process Should Be (¢, 6)-DP! |

D: a training set 6: a model ]
. S p

o "7° o ) i --------- » 1. Take L, and compute L(0)
° ©oy 2-Compute g OfL(O) o
° | 3. Update theg ="

Oregon State
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MAKE EACH MINI-BATCH SGD STEP (¢, §)-DP

* Mini-batch stochastic gradient descent (SGD)
1. Ateach step t, it takes a mini-batch L;

2. Computes the loss L(8) over the samplesin L;, w.r.t. the label y
3. Computes the gradients g, of L(8)

6. Update the model parameters 8 towards the direction of reducing the loss

D: a training set 6: a model

» 1. Take L;, and compute L(60)

o N\ T
C 4 4 :‘ ). ------- 2. Compute gt OfL(Q) |
. | o | 4 Updatethes

o B © 4. Update the 6
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MAKE THE ENTIRE TRAINING PROCESS (€, 6)-DP

* Mini-batch stochastic gradient descent (SGD)
- SGD iteratively computes the (¢, §)-DP step T times
— Problem: how do we compute the total privacy leakage €;,+ over T iterations?

* Privacy accounting with moment accountant
DP has the property

* Suppose the two mechanism M; and M, satisfies (&1, §1)- and (&,, 6,)-DP
the composition of those mechanisms M; = M, (M,) satisfies (g1+&5, §;+6,)-DP

* |f each step t satisfies (&, §)-DP, the total SGD process satisfies (€T, 6T)-DP

tracking the total privacy leakage €T over T iterations

AR
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PUTTING ALL TOGETHER

DP-Stochastic Gradient Descent (DP-SGD)

Algorithm 1 Differentially private SGD (Outline) // we train a model 8 with the privacy budget epyqget

Input: Examples {zi,...,zn}, loss function L(0) =
+ 3, L(0,z;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6y randomly

for t € [T] do // iterate over T mini-batches
Take a random sample L; with sampling probability
L/N
Compute gradient // compute the gradient

For each i € L, compute g¢(z;) < Vo, L(0, ;)
Clip gradient

8:(x:) + ge(xi)/ max (1, w) // clip the magnitude of the gradients

Add noise . . .

& L (3, 8(x:) + N(0,02C2T)) // add Gaussian random noise to the gradients
Descent

Orr1 < 0 — M8t o

£,0 € compute the privacy cost (leakage) so far // compute the privacy cost (leakage) up to t iterations
If £> &}, 50¢: then break; // if the cost is over the budget, then stop training

Output 07 and compute the overall privacy cost (g,6)
using a privacy accounting method.

Oregon State
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EVALUATION

* Setup
- Datasets: MNIST | CIFAR-10/100
- Models:
* MNIST: 2-layer feedforward NN on 60-dim. PCA projected inputs
* CIFAR-10/100: A CNN with 2 conv. layers and 2 fully-connected layers

- Metrics:
* Classification accuracy
* Privacy cost (epyaget)
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EVALUATION

* Impact of Noise
- Dataset, Models: MNIST, 2-layer feedforward NN
— Setup: 60-dim PCA projected inputs | Clipping threshold (C): 4 | Noise (o): 8, 4, 2 (from the left)
- Summary:
* On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)
* The accuracy of private models decreases as we decrease the privacy cost

1.00 ————————————2=21.0 1.00 —————————— ,17‘5 1.0 1.00 —————————————2=21.0

0.95} los 0.95} | . _ los 0.95} " los

0.00| e 000 F 0.90
> o {06 > , {06 > , {056
] . training accuracy o] o - training accuracy ot ® . training accuracy ol
£ 085 £ £ 085 _ g £ ossfl 2
o — testing accuracy o o — testing accuracy o o — testing accuracy o
g {0.4 g {0.a g {0.a

0.80 0.80 0.80

0.75 102 0.75} | 102 0.75} 102

(57 S 0.0 0.70 b 0.0 0.70 bttt 0.0

2 4 6 8 10 12 14 16 18 0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 700 800
epoch epoch epoch
(1) Large noise (2) Medium noise (3) Small noise
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EVALUATION

* Impact of Noise
- Dataset, Models: MNIST, 2-layer feedforward NN
— Setup: 60-dim PCA projected inputs | Clipping threshold (C): 4 | Noise (o): 8, 4, 2 (from the left)
- Summary:
* On MNIST, DP-SGD offers reasonable acc. under various privacy costs (clean: 98.3%)
* The accuracy of private models decreases as we decrease the privacy cost

1.00

0.98

accuracy

= delta=1e-05

=+ delta=le-04

e+ delta=1e-03 ||
delta=1e-02

10 10° 10!
epsilon
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EVALUATION

* Impact of Noise
- Dataset, Models: CIFAR-10, CNN
— Setup: Clipping threshold (C): 3 | Noise (0): 6
- Summary:

accuracy

* On CIFAR-10, DP-SGD offers reasonable acc. under various privacy costs (clean: 80%)
* The accuracy of private models decreases as we decrease the privacy cost
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. training accuracy | .
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DEFEATING ADVERSARIAL EXAMPLES
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ADVERSARIAL EXAMPLES ARE THE WORST-CASE NOISE

* A test-time input to a neural network
- Crafted with the objective of fooling the network’s decision(s)

+0.007 x fi

Prediction: Panda Human-imperceptible Noise Prediction: Gibbon
v Goodfellow et al., Explaining and Harnessing Adversarial Examples, International Conference on Learning Representations (ICLR), 2015.
Oregon State
&7 University
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DENOISING DIFFUSION MODELS

* Denoising diffusion probabilistic models (DDPMs)
- Generative models trained to gradually denoise the data
- The diffusion process transforms an image x to the purely random noise

q(x¢|x¢—1)
O~ @@z -

- Given an image x, the model samples a noisy image: z: = \/a; - ¢+ V1 — oy - N(0,I)
a is a constant derived from t and determines the amount of noise to be added
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DENOISING DIFFUSION MODELS

* Denoising diffusion probabilistic models (DDPMs)
- Generative models trained to gradually denoise the data
- The diffusion process transforms an image x to the purely random noise

q(x¢|X¢—1)
g ~ O @ -

- The reverse process synthesizes x from random Gaussian noise

Pa(xt—1|xt)
O @@z

“.,,; Oregon State
%‘. > . A
& University
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WE HAVE PRE-TRAINED DENOISERS

* Denoising diffusion probabilistic models (DDPMs)
- Generative models trained to gradually denoise the data

- The diffusion process transforms an image x to the purely random noise
- The reverse process synthesizes x from random Gaussian noise

e Use DDPMs as a denoiser Dy: RY — R“

— One-shot denoising: apply the diffusion model once for a fixed noise level
- Multi-step denoising: apply the diffusion process multiple times
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PROVABLE GUARANTEE AGAINST INPUT PERTURBATIONS

* Practical algorithms for prediction and certification
Algorithm 2 Randomized smoothing (Cohen et al., 2019) -

PrEDICT(Z,0,N,n):
counts <0
forie {1,2,...,N} do

Yy < NOISEANDCLASSIFY(Z,0) s
counts|y] ¢ countsly] + 1 Guarantee the probability of PREDICT

na,np < counts|jal, counts iz Algorithm 1 Noise, denoise, classify

if BINOMPTEST(nA,n4 +np,1/2) <nthen
return ¢ 4

else
return Abstain

NoIsEANDCLASSIFY(T,O):

1:

2

3

4

5

6:  §a,Jp < toptwo labels in counts returning a class other than g(x) is «
7.

8

9

0 t*, a4 <~ GETTIMESTEP(0)
1

10:
11: Tyx € o/ Op* ($ +N(O,O’21))

1:

2

3

4: Z + denoise(zs;t*)
5: Y fclf(ﬁ)

6: return y

7

8

9

: GETTIMESTEP(0):

t* « find ¢ s.t. 1;% = g2

10: return t*, o«

Oregon State
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EVALUATION

* Setup
— Data: CIFAR-10 and ImageNet-21k
- Model: Wide-ResNet-28-10 (white-box)
- Denoisers: DDPMs

* Measure
- Certified test-set accuracy under a radius R with a confidence of a
— Under various smoothing factor ¢ (std. of Gaussian noise used)
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EVALUATION

* Certified accuracy vs. prior work (ImageNet-21k)

- DDPM denoisers offer the highest certified accuracy compared to the prior work
— To achieve the highest accuracy, one can use this off-the-shelf model w/o training

Certified Accuracy at € (%)

Method Off-the-shelf Extra data 0.5 1.0 1.5 2.0 3.0
PixeIDP (Lecuyer et al., 2019) O X (33.0)16.0 - -

RS (Cohen et al., 2019) O X (670490 70370 670290 (“40190 (“40120
SmoothAdv (Salman et al., 2019) ® X (65.0)56,0 (5400430 (54.0)370 (40.00270 (4000200
Consistency (Jeong & Shin, 2020) O X (55.0)50,0 (5500440 (35-00340 (410240 (10170
MACER (Zhai et al., 2020) O X (68.0)570 (640)43 0 (64.0)31 (48.0)250 (48.0)140
Boosting (Horvith et al., 2022a) ® X (65.6)570 (6700446 (700384 (“46)28,6 (386212
DRT (Yang et al., 2021) O X (52.2)46.8 (55:2)44.4 (49-8)39.8 (49-8)304 (498)234
SmoothMix (Jeong et al., 2021) O X (55.0)50,0 (5500430 (55.0)38,0 (40-0)260 (4000200
ACES (Horvith et al., 2022b) © X (63.8)540 (572)422 (55.6)356 (398)256 (44.0)198
Denoised (Salman et al., 2020) 0 X (60.0)33 0 (380)140 (38.0)g0 - -
Lee (Lee, 2021) o X 41.0 24.0 11.0 - -
Ours ° v (82.8)71,1 (771543 (771381 (60.0)29,5 (60.0)13 1
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EVALUATION

* One-shot vs. multi-step denoising (ImageNet-21k)

- One-shot denoising offers more faithful results
- Multi-step denoising destroys the information about the original image

label: paper towel prediction: paper towel prediction: printer

Figure 3: Intuitive examples for why multi-step denoised images are less recognized by the classifier.
From left to right: clean images, noisy images with o = 1.0, one-step denoised images, multi-step
denoised images. For the denoised images, we show the prediction by the pretrained BEiT model.
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CAN WE USE DENOISING MODELS TO DEFEAT CLEAN-LABEL POISONING?

Target instances from Fish class

Poison
instances
made for
fish class
from dog
base
instances

Target instances from Dog class

Poisons
made for
dog class
from fish
bases

™ Oregon State

& University
Secure Al Systems Lab (SAIL) :: CS499/579 - Trustworthy ML



PROVABLE GUARANTEE AGAINST DATA POISONING

* Practical algorithms for prediction and certification

Pseudocode Predict and certify (Cohen et al., 2019)

1
2
3
4.
5:
6.
7
8

: fn PREDICT(f, 0, D, z,m, )

counts ¢ NDTCLASSIFY(f, o, D, x, mo)
Ca,Cp + top two predictions in counts
n4,Np < counts[cy], counts|cg]

if BINOMPVAL(ns,n4 + np,0.5 < a) ret ¢y
else ret ABSTAIN

: fn CERTIFY(f, 0, D, x, mo, m, @)

9:
10:
11:
12:
13:
14:

counts0 < NDTCLASSIFY(f, o, D, z, mp)

ca + top predictions in count s0

counts < NDTCLASSIFY(f, o, D,x,m)

pa < LOWERCFBOUND(counts[cal,m,1 — a)
if py > 1/2 ret ¢, and radius c®*(p,)

else ret ABSTAIN

iR
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Guarantee the probability of PREDICT
returning a class other than f(x) is a

Pseudocode Noise, denoise, train, and classify

1

2
3
4:
S¢
6
7
8

: fn NDTCLASSIFY(f, 0, D, xz,n)
counts «+ 0
fori € {1,2,...,n} do
t*, ay» < GETTIMESTEP(0)
D « NOISEANDDENOISE(D, ayy+; t*)
fg < TRAIN(D, ) X
counts[fg(x)] + counts[fg(z)] +1
ret counts

9:

10

11:
12:

: fn GETTIMESTEP(0)
t* « find ¢ s.t. 5% = o2
rett*, oy-
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PROVABLE GUARANTEE AGAINST DATA POISONING

* Performance comparison to Gaussian “noising”

— Our approach achieves a guarantee comparable to existing ones
- The time it takes to achieve that guarantee is 20x less

084 \ — §=0.25
\ — 0=1.0

Certified accuracy
Certified Accuracy

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Radius Radius
Figure 1: Certified radius and accuracy attained by denoising the CIFAR10 training data with varying o values in {0.1,
0.25, 0.5, 1.0} (left) and by adding Gaussian random noise to the training data with o values in {0.25, 1.0} (right).
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EVALUATION

» Defeating clean-label poisoning attacks

— The results are from the transfer-learning scenarios (one-shot kill attacks)
— Our approach completely renders these attacks ineffective
Table 1: Defense effectiveness in transfer-learning scenarios (CIFAR10). We measure the clean accuracy and attack

success of the models trained on the denoised training set. Each cell shows the accuracy in the parentheses and the attack
success outside. Note that T indicates the runs with #=0.0, the same as our baseline that trains models without any denoising.

| Our defense against £, attacks at o (%) | Our defense against £, attacks at o (%)
Poisoning attacks Knowledge | 0.0 0.1 0.25 0.5 1.0 | 0.0 0.1 0.25 0.5 1.0
Poison Frog! (93.6)990 (93.3)g0 (180 (489 (7990 | (98.6)ggg (93390 (92790 (0B (7400
Convex Polytope (93.7)162 (932090 L7 B66Q (TT0gQ | 98722 (3390 2790 @089 G730,
Bullseye Polytope § (93.5)100 (93:3)40 (926)9Q (875)90 (792)10 | (95100 (98390 270 (0810 (BTS00
Label-consistent Backdoor - (#83.2)10 98390 2690 0319 (BT
Hidden Trigger Backdoor - (934)70 (933)g0 (926)90 080 (87300
Poison Frog! (91.6)10,0 (1290 (B9€)g5 (82990 (7820 | (L7255 (L3)gQ @03 (88805 (86.2)1
Convex Polytope (O1L.7)30 (91090 (898)g0 (846)g5 (736)1 | (1825 (13 (9300 (8895 (86.2)10
Bullseye Polytope & (169 (139 (0890 B389 (16319 | LEgg 3o (03, n (8885 (86205
Label-consistent Backdoor . (@150 OL3gp G03)pg (880 (8625
Hidden Trigger Backdoor - (916)4,0 (O1.2)1 0 (903)] {] (89.3)15 (86.3)) 5
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EVALUATION

» Defeating clean-label poisoning attacks

- The results are from training from scratch scenarios
— Our approach completely renders these attacks ineffective

Table 2: Defense effectiveness in training from-scratch scenarios (CIFAR10). We measure the accuracy and attack
success of the models trained on the denoised training set. Each cell shows the accuracy in the parentheses and the attack
success outside. Note that T indicates the runs with ¢=0.0, the same as our baseline that trains models without any denoising.
We use an ensemble of four models, and WB and BB stand for the white-box and the black-box attacks, respectively.

| Our defense against £, attacks at o (%) | Our defense against ¢__ attacks at o (%)
Poisoning attacks Knowledge | 0.0 0.1 0.25 0.5 1.0 | 10.0 0.1 0.25 0.5 1.0

92.3)g5 0 (86.5)gp (TL9)3 g (46.0}g (41.3)7 n
(924350 (6170 (05 (7095 (397100

[\‘.':IO.U}33I5 (35.&,]3‘5 75.5}2_5 [58.8]6.0 {43'”6.5
(900185 (86115 (B570 G8Hge g0

92.2)710 64540 (23100 ©“EN110 ©2857100
924405 4Ye65 (L8195 WES30 (399105

(901455 (38980 (Ta8)q0 (8879 (90100
(50.0}39‘5 (850}445 (751J145 {58'6)9.5 {49'0)8.'.}

Witches’ Brew
Sleeper Agent Backdoor

Witches’ Brew
Sleeper Agent Backdoor

BB | WB
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Thank You!

Sanghyun Hong

https://secure-ai.systems/courses/Sec-Grad/current
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